Abstract
In this paper we show that the Beilinson-Lichtenbaum Conjecture which describes motivic cohomology of (smooth) varieties with finite coefficients is equivalent to the Bloch-Kato Conjecture, relating Milnor K-theory to Galois cohomology. The latter conjecture is known to be true in weight 2 for all primes [M-S] and in all weights for the prime 2 [V 3].
Keywords
- Spectral Sequence
- Finite Type
- Closed Subscheme
- Distinguished Triangle
- Open Subscheme
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Preview
Unable to display preview. Download preview PDF.
References
H. Bass and J. Tate,Milnor Ring of a Global Field,Lecture Notes in Math. 342 (1973), 349–446.
S. Bloch,Algebraic Cycles and Higher K-Theory,Adv. in Math. 61 (1986), 267–304.
S. Bloch, The Moving Lemma for Higher Chow Groups,Journal of Algebraic Geometry 3 (1994), 537–568.
S. Bloch and A. Ogus, Gersten’s Conjecture and the Homology of Schemes, Ann. Sci. Ecole Norm. Super. (4) 7 (1975), 181–201.
A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.
E. Friedlander and V. Voevodsky, Bivariant Cycle Cohomology, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.
O. Gabber, Affine Analog of the Proper Base Change Theorem, Israel J. Math. 87 (1994), 325–335.
A. Grothendieck, Étude Local des Schemas et des Morphisms de Schemas,Publ. Math. IHES 20, 24, 28, 32 (1964–1967.).
A. Grothendieck, M. Artin and J.-L. Verdier, Théorie des Topos et Cohomologie Étale des Schemas,Lecture Notes in Math. 269, 270, 304 (1972–73).
A.J. de Jong, Smoothness, Semistability and Alterations, Publ. Math. IHES 83 (1996), 51–93.
A. Merkurjev and A. Suslin, Norm Residue Homomorphism and K-cohomology of Severi-Brauer Varieties., Math USSR Izv. 21 (1983), 307–340.
A. Merkurjev, On the Norm Residue Homomorphism for Fields, Amer. Math. Soc. Transl. 174 (1996).
J. Milne, Étale Cohomology, Princeton University Press, 1980.
Yu. Nesterenko and A. Suslin, Homology of the General Linear Group over a Local Ring and Milnor K-Theory, Izv. AN SSSR 53 (1989), 121–146.
Ye. Nisnevich, The Completely Decomposed Topology on Schemes and Associated De-scent Spectral Sequence in Algebraic K-Theory,Algebraic K-Theory: Connections with Geometry and Topology, Kluwer Acad. Publ., 1989.
M. Raynaud and L. Gruson, Critéres de Platitude et de Projectivité,Inv. Math. 13 (1971), 1–89.
A Suslin Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.
A. Suslin and V. Voevodsky, Singular Homology of Abstract Algebraic Varieties, Inv. Math. 123 (1996), 61–94.
V. Voevodsky, Homology of Schemes, Selecta Math. 2 (1996), 111–153.
V. VoevodskyCohomological Theory of Presheaves with Transfers, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.
V. Voevodsky, Triangulated Category of Motives over a field,Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.
V. Voevodsky The Milnor Conjecture, Preprint, Max-Planck-Institut fur Math. (1977).
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Suslin, A., Voevodsky, V. (2000). Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds) The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4098-0_5
Download citation
DOI: https://doi.org/10.1007/978-94-011-4098-0_5
Publisher Name: Springer, Dordrecht
Print ISBN: 978-0-7923-6194-7
Online ISBN: 978-94-011-4098-0
eBook Packages: Springer Book Archive