Skip to main content

Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients

  • Chapter

Part of the NATO Science Series book series (ASIC,volume 548)

Abstract

In this paper we show that the Beilinson-Lichtenbaum Conjecture which describes motivic cohomology of (smooth) varieties with finite coefficients is equivalent to the Bloch-Kato Conjecture, relating Milnor K-theory to Galois cohomology. The latter conjecture is known to be true in weight 2 for all primes [M-S] and in all weights for the prime 2 [V 3].

Keywords

  • Spectral Sequence
  • Finite Type
  • Closed Subscheme
  • Distinguished Triangle
  • Open Subscheme

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-4098-0_5
  • Chapter length: 73 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   299.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-4098-0
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   379.99
Price excludes VAT (USA)
Hardcover Book
USD   379.99
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. H. Bass and J. Tate,Milnor Ring of a Global Field,Lecture Notes in Math. 342 (1973), 349–446.

    MathSciNet  Google Scholar 

  2. S. Bloch,Algebraic Cycles and Higher K-Theory,Adv. in Math. 61 (1986), 267–304.

    CrossRef  MathSciNet  MATH  Google Scholar 

  3. S. Bloch, The Moving Lemma for Higher Chow Groups,Journal of Algebraic Geometry 3 (1994), 537–568.

    MathSciNet  MATH  Google Scholar 

  4. S. Bloch and A. Ogus, Gersten’s Conjecture and the Homology of Schemes, Ann. Sci. Ecole Norm. Super. (4) 7 (1975), 181–201.

    MathSciNet  Google Scholar 

  5. A. Dold, Lectures on Algebraic Topology, Springer-Verlag, 1972.

    Google Scholar 

  6. E. Friedlander and V. Voevodsky, Bivariant Cycle Cohomology, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.

    Google Scholar 

  7. O. Gabber, Affine Analog of the Proper Base Change Theorem, Israel J. Math. 87 (1994), 325–335.

    CrossRef  MathSciNet  MATH  Google Scholar 

  8. A. Grothendieck, Étude Local des Schemas et des Morphisms de Schemas,Publ. Math. IHES 20, 24, 28, 32 (1964–1967.).

    Google Scholar 

  9. A. Grothendieck, M. Artin and J.-L. Verdier, Théorie des Topos et Cohomologie Étale des Schemas,Lecture Notes in Math. 269, 270, 304 (1972–73).

    MathSciNet  Google Scholar 

  10. A.J. de Jong, Smoothness, Semistability and Alterations, Publ. Math. IHES 83 (1996), 51–93.

    CrossRef  MATH  Google Scholar 

  11. A. Merkurjev and A. Suslin, Norm Residue Homomorphism and K-cohomology of Severi-Brauer Varieties., Math USSR Izv. 21 (1983), 307–340.

    CrossRef  Google Scholar 

  12. A. Merkurjev, On the Norm Residue Homomorphism for Fields, Amer. Math. Soc. Transl. 174 (1996).

    Google Scholar 

  13. J. Milne, Étale Cohomology, Princeton University Press, 1980.

    MATH  Google Scholar 

  14. Yu. Nesterenko and A. Suslin, Homology of the General Linear Group over a Local Ring and Milnor K-Theory, Izv. AN SSSR 53 (1989), 121–146.

    MATH  Google Scholar 

  15. Ye. Nisnevich, The Completely Decomposed Topology on Schemes and Associated De-scent Spectral Sequence in Algebraic K-Theory,Algebraic K-Theory: Connections with Geometry and Topology, Kluwer Acad. Publ., 1989.

    Google Scholar 

  16. M. Raynaud and L. Gruson, Critéres de Platitude et de Projectivité,Inv. Math. 13 (1971), 1–89.

    CrossRef  MathSciNet  MATH  Google Scholar 

  17. A Suslin Higher Chow Groups and Étale Cohomology, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.

    Google Scholar 

  18. A. Suslin and V. Voevodsky, Singular Homology of Abstract Algebraic Varieties, Inv. Math. 123 (1996), 61–94.

    CrossRef  MathSciNet  MATH  Google Scholar 

  19. V. Voevodsky, Homology of Schemes, Selecta Math. 2 (1996), 111–153.

    CrossRef  MathSciNet  MATH  Google Scholar 

  20. V. VoevodskyCohomological Theory of Presheaves with Transfers, Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.

    Google Scholar 

  21. V. Voevodsky, Triangulated Category of Motives over a field,Cycles, Transfers and Motivic Homology Theories (V. Voevodsky, A. Suslin and E. Friedlander, eds.), Annals of Math. Studies, 1999.

    Google Scholar 

  22. V. Voevodsky The Milnor Conjecture, Preprint, Max-Planck-Institut fur Math. (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Suslin, A., Voevodsky, V. (2000). Bloch-Kato Conjecture and Motivic Cohomology with Finite Coefficients. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds) The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4098-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4098-0_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6194-7

  • Online ISBN: 978-94-011-4098-0

  • eBook Packages: Springer Book Archive