Abstract
In this paper we study the reduction of abelian varieties. In particular, we study the relationships between n-torsion points onXand the reduction of X, where X is an abelian variety over a field F with a discrete valuation, and n is an integer not divisible by the residue characteristic.
Key words
- abelian varieties
- semistable reduction
- torsion points
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
A. Bertapelle, S. Bosch, Weil restriction and Grothendieck’s duality conjecture, Preprintreihe SFB 478, Heft 16, Universität Münster (1998).
S. Bosch, W. Lütkebohmert, Stable reduction and uniformization of abelian varieties. II, Invent. Math. 78 (1984), no. 2, 257–297
S. Bosch, W. Lütkebohmert, Néron models from the rigid analytic viewpoint, J. Reine Angew. Math. 364 (1986), 69–84.
S. Bosch, W. Lütkebohmert, M. Raynaud, Néron models, Springer-Verlag, Berlin-HeidelbergNew York, 1990.
S. Bosch, W. Lütkebohmert, Degenerating abelian varieties, Topology 30 (1991), 653–698.
S. Bosch, K. Schloter, Néron models in the setting of formal and rigid geometry, Math. Ann. 301 (1995), 339–362.
S. Bosch, X. Xarles, Component groups of Néron models via rigid uniformization, Math. Ann. 306 (1996), 459–486.
S. Bosch, Component groups of abelian varieties and Grothendieck’s duality conjecture, Ann. Inst. Fourier 47 (1997), no. 5, 1257–1287.
M. Deschamps, Réduction semi-stable, in Séminaire sur les pinceaux des courbes de genre au moins deux, L. Szpiro, ed., Astérisque 86 (1981), 1–34.
B. Edixhoven, Néron models and tame ramification, Compositio Math. 81 (1992), no 3,291–306.
B. Edixhoven, On the prime-to-p part of the group of connected components of Néron models, Comp. Math. 97 (1995), 29–49.
B. Edixhoven, Q. Liu, D. Lorenzini, The p-part of the group of components of a Néron model, J. of Alg. Geom. 5 (1996), 801–813.
G. Faltings, C-L. Chai, Degeneration of abelian varieties, Springer-Verlag, Berlin-Heidelberg, 1990.
A. Grothendieck, Modèles de Néron et monodromie, in Groupes de monodromie en géometrie algébrique, SGA7 I, A. Grothendieck, ed., Lecture Notes in Math. 288Springer, Berlin-Heidelberg-New York, 1972, pp. 313–523.
A. Kraus, Sur le défaut de semi-stabilité des courbes elliptiques à réduction additive, Manuscripta math. 69 (1990), 353–385.
K. Künnemann, Projective regular models for abelian varieties, semistable reduction, and the height pairing, Duke Math. J. 95 (1998), 161–212.
H. W. Lenstra, Jr.,F. Oort, Abelian varieties having purely additive reduction, J. Pure and Applied Algebra 36 (1985), 281–298.
B. Kunyayskii, J-J. Sansuc, Un problème inverse pour la réduction des groupes algébriques commutatifs, C. R. Acad. Sci. Paris 324 (1997), Série I, 307–312.
B. Kunyayskii, J-J. Sansuc, Réduction des groupes algébriques commutatifs, Max-PlanckInstitut preprint #1998–112 (1998).
D. Lorenzini, Groups of components of Néron models of Jacobians, Compositio Math. 73 (1990), no. 2, 145–160.
D. Lorenzini, Jacobians with potentially good 1-reduction, J. Reine Angew. Math. 430 (1992), 151–177.
D. Lorenzini, On the group of components of a Néron model, J. Reine Angew. Math. 445 (1993), 109–160.
W. McCallum, Duality theorems for Néron models, Duke Math. J. 53 (1986), 1093–1124.
D. Mumford, An analytic construction of degenerating abelian varieties over complete rings, Comp. Math. 24 (1972), 239–272.
D. Mumford, Abelian varieties, Second Edition, Tata Lecture Notes, Oxford University Press, London, 1974.
E. Nart, X. Xarles, Additive reduction of algebraic tori, Arch. Math. 57 (1991), 460–466.
A. Néron, Modèles minimaux des variétés abéliennes sur les corps locaux et globaux, Inst. Hautes Etudes Sci. Publ. Math. 21 1964, 128 pp.
M. Raynaud, Modèles de Néron, C. R. Acad. Sci. Paris Sér. A-B 262 (1966), A345–A347.
M. RaynaudVariétés abéliennes et géométrie rigide. Actes du Congrès International des Mathématiciens (Nice, 1970), Tome 1, pp. 473–477. Gauthier-Villars, Paris, 1971.
J-P. Serre, Propriétés galoisiennes des points d’ordre fini des courbes elliptiques, Invent. math. 15 (1972), 259–331.
J-P. Serre, J. Tate, Good reduction of abelian varieties, Ann. of Math.88 (1968), 492–517.
A. Silverberg, Yu. G. Zarhin, Semistable reduction and torsion subgroups of abelian varieties, Ann. Inst. Fourier 45, no. 2 (1995), 403–420.
A. Silverberg, Yu. G. Zarhin, Connectedness results for 1-adic representations associated to abelian varieties, Comp. math. 97 (1995), 273–284.
A. Silverberg, Yu. G. Zarhin, Variations on a theme of Minkowski and Serre, J. Pure and Applied Algebra, 111 (1996), 285–302.
A. Silverberg, Yu. G. Zarhin, Semistable reduction of abelian varieties over extensions of small degree, J. Pure and Applied Algebra, 132 (1998), 179–193.
A. Silverberg, Yu. G. Zarhin, Subgroups of inertia groups arising from abelian varieties, J. Algebra, 209 (1998), 94–107.
A. Silverberg, Yu. G. Zarhin, Étale cohomology and reduction of abelian varieties,preprint (1998)http://xxx.lanl.gov/abs/math.AG/9808125.
A. Silverberg, Yu. G. Zarhin, Polarizations on abelian varieties and self-dual f-adic representations of inertia groups, preprint (1999).
A. Silverberg, Yu. G. Zarhin, Symplectic representations of inertia groups, in preparation.
J. H. Silverman, The Néron fiber of abelian varieties with potential good reduction, Math. Ann. 264 (1983), 1–3.
A. Weil, Variétés abéliennes et courbes algébriques, Hermann, Paris, 1948.
A. Werner, On Grothendieck’s pairing of component groups in the semistable reduction case, J. Reine Angew. Math. 486 (1997), 205–215.
X. Xarles, The scheme of connected components of the Néron model of an algebraic torus, J. Reine Angew. Math. 437 (1993), 167–179.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2000 Springer Science+Business Media Dordrecht
About this chapter
Cite this chapter
Silverberg, A., Zarhin, Y.G. (2000). Reduction of Abelian Varieties. In: Gordon, B.B., Lewis, J.D., Müller-Stach, S., Saito, S., Yui, N. (eds) The Arithmetic and Geometry of Algebraic Cycles. NATO Science Series, vol 548. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4098-0_19
Download citation
DOI: https://doi.org/10.1007/978-94-011-4098-0_19
Publisher Name: Springer, Dordrecht
Print ISBN: 978-0-7923-6194-7
Online ISBN: 978-94-011-4098-0
eBook Packages: Springer Book Archive