Skip to main content

Part of the book series: NATO Science Series ((ASHT,volume 76))

  • 878 Accesses

Abstract

The proton exchange in lithium niobate has become a very popular technique for fabrication of high-quality optical waveguides, which find numerous applications in integrated optics and acoustooptics. Many acoustooptic devices are based on the interaction between surface acoustic waves and guided optical waves. The surface acoustic wave propagation conditions strongly depend on crystal surface properties, which are considerably affected by the proton exchange and post-exchange annealing procedures. The present paper deals with the piezoelectric properties of protonated structures, which differ significantly from those of initial crystals. The results of direct measurements of the electromechanical coupling coefficient using two methods are presented. The first method is based on the comparison of acoustic velocities on a free and metallised surface of the crystal, and the second is based on in situ measurements of acoustic attenuation during evaporation of a thin metal film on the acoustic propagation path. The degradation of piezoelectric properties in a surface layer due to the proton exchange is demonstrated, and they could not be restored by the post-exchange annealing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackel, J.L., Rice, C.E., and Veselka, J.J. (1982) Proton exchange for high-index waveguides in LiNbO3, Appl. Phys. Lett. 41, 607–608.

    Article  Google Scholar 

  2. Shimizu, Y., (1993) Current status of piezoelectric substrate and propagation characteristics for SAW devices, Jpn. J. Appl. Phys. 32, 2183–2187.

    Google Scholar 

  3. De Micheli, M., Botineau, J., Neveu, S., Sibillot, P., Ostrowsky, D.B., and Papuchon, M. (1983) Independent control of index and profiles in proton-exchanged lithium niobate guides, Optics Letters 8, 114–115.

    Article  Google Scholar 

  4. Hinkov, V. and Ise, E. (1985) Surface acoustic velocity perturbation in LiNbO3 by proton exchange, J. Phys. D: Appl. Phys. 18, L31–L34.

    Article  Google Scholar 

  5. Hinkov, V., Barth, M. and Dransfeld, K. (1985) Acoustic properties of proton exchanged LiNbO3 investigated by Brillouin scattering, Appl. Phys. A, 38, 269–273.

    Article  Google Scholar 

  6. Burnett, P.J., Briggs G.A., Al-Shukri S.M., Duffy J.F., and De La Rue, R.M. (1986) Acoustic properties of proton-exchanged LiNbO3 studied using the acoustic microscopy V(z) technique, J. Appl. Phys. 60, 2517–2522.

    Article  Google Scholar 

  7. Hinkov, V. (1987) Proton exchanged waveguides for surface acoustic waves in LiNbO3. J. Appl. Phys. 62, 3573–3578.

    Article  Google Scholar 

  8. Chen, Y.C., Cheng, C.C. (1996) Proton-exchanged Z-cut LiNbO3 waveguides for surface acoustic waves, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 43, 417–421.

    Article  Google Scholar 

  9. Biebl, E.M. and Russer, P. (1992) Elastic properties of proton exchanged lithium niobate, IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 330–334.

    Article  Google Scholar 

  10. Čiplys, D., Rimeika, R., Korkishko, Yu. V., and Fedorov, V.A. (1998) Velocities of surface acoustic waves in proton exchanged lithium niobate with different HxLi1-xNbO3 phases, Ultragarsas(Ultrasound) 29, 24–28.

    Google Scholar 

  11. Kakio, S., Matsuoka, J., and Nakagawa, Y. (1993) Surface acoustic wave properties on proton-exchanged 128°-rotated Y-cut LiNbO3, Jpn. J. Appl. Phys. Part I 32, 2359–2361.

    Article  Google Scholar 

  12. Paškauskas, J., Rimeika, R., and Čiplys, D. (1995) Velocity and attenuation of surface acoustic waves in proton-exchanged 128° rotated Y-cut LiNbO3, J. Phys. D: Appl. Phys. 28, 1419–1423.

    Article  Google Scholar 

  13. Saiga, N., Ichioka, Y. (1987) Acousto-optic interaction in proton-exchange 128° rotated Y-cut LiNbO3 optical waveguides, J. Appl. Phys. 61, 1230–1233.

    Article  Google Scholar 

  14. Hickernell, F.S., Ruehle, K.D., Joseph, S.J., Reese, G.M., and Weiler, J.F. (1985) The surface acoustic wave properties of proton exchanged YZ lithium niobate, Proc. IEEE Ultrason. Symp., 237–240.

    Google Scholar 

  15. Čiplys, D. and Rimeika, R. (1998) Velocity of surface acoustic waves in metallised PE LiNbO3, Electron. Lett., 34, 1707–1709.

    Article  Google Scholar 

  16. Čiplys, D. and Rimeika, R. (1998) Electromechanical coupling coefficient for surface acoustic waves in proton-exchanged 128°-rotated Y-cut lithium niobate, Appl. Phys.Lett. 73, 2417–2419.

    Article  Google Scholar 

  17. Rimeika, R. and Čiplys, D. (1998) Influence of annealing on electromechanical coupling coefficient in proton exchanged 128°-rotated Y-X LiNbO3, Phys. Stat. Sol. (a) 168, R5–R6.

    Article  Google Scholar 

  18. Auld, B. A. (1973) Acoustic fields and waves in solids, John Wiley and Sons, New York.

    Google Scholar 

  19. Slobodnik, A.J.Jr., Conway, E.D., and Delmonico, R.T. (1973) Microwave Acoustics Handbook 1A, Air Force Cambridge Research Laboratories, Hanscom.

    Google Scholar 

  20. Sereika, A.P., Garska, ER, Milkeviciene, Z.A., and Jucys, A.J. (1974) Electronic attenuation of surface acoustic wave in piezoelectric-metal film structure, Solid State Physics (in Russian) 16, 2415–2417.

    Google Scholar 

  21. Kotelianskii, I.M., Krikunov, A.I., Medved, A. V, and Miskinis, R. A. (1981 ) Measurement of effective electromechanical coupling constant and effective dielectric permittivity of piezoelectric-thin dielectric layer structures, Microelectronics(in Russian) 10, 543–545.

    Google Scholar 

  22. Ingebrigtsen, K. A. (1970) Linear and non-linear attenuation of acoustic surface waves in a piezoelectric coated with a semiconducting film, J. Appl. Phys. 41, 454–459.

    Article  Google Scholar 

  23. Ganshin, V.A. and Korkishko, Yu.N. (1991) H:LiNbO3 waveguides: effects of annealing, Optics Comm. 86, 523–530.

    Article  Google Scholar 

  24. Rice, C.E. (1986) The structure and properties of Li1-xHxNbO3, J. Solid State Chem. 64, 188–191.

    Google Scholar 

  25. Korkishko, Yu. V., Fedorov, V.A., and Kostrickii, S.M. (1998) Optical and x-ray characterization of HxLi1-xNbO3 phases in proton-exchanged LiNbO3 optical waveguides, J. Appl Phys. 84, 2411–2419.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Čiplys, D., Rimeika, R. (2000). Piezoelectric Properties of Proton-Exchanged Optical Waveguides. In: Galassi, C., Dinescu, M., Uchino, K., Sayer, M. (eds) Piezoelectric Materials: Advances in Science, Technology and Applications. NATO Science Series, vol 76. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4094-2_22

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4094-2_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6213-5

  • Online ISBN: 978-94-011-4094-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics