Skip to main content

Novel rapid antimicrobial susceptibility tests for Mycobacterium tuberculosis

  • Chapter
Multidrug-resistant Tuberculosis

Part of the book series: Resurgent and Emerging Infectious Diseases ((REID,volume 1))

Abstract

Recent advances in the field of molecular biology and progress in the understanding of the molecular basis of Mycobacterium tuberculosis drug resistance have provided new tools for the rapid detection of drug resistance. However, partly due to the costs involved in their implementation, these novel techniques have not been applied in most clinical mycobacteriology laboratories, especially in low-income countries where tuberculosis (TB) constitutes a more serious health problem. Conventional methods such as the proportion method [1], the absolute concentration method, and the resistance-ratio method [2], are based on the measurement of growth in culture media containing antibiotics, and usually take several weeks to obtain results. The introduction of the BACTEC® radiometric system, and its adaptation for performing drug susceptibility testing (DST) of M. tuberculosis (BACTEC® TB-460), was therefore a major breakthrough for the rapid detection of mycobacterial growth and for the detection of drug resistance in tuberculosis [3,4]. BACTEC® is now used in numerous laboratories around the world but unfortunately mainly in developed countries or in reference laboratories with the necessary resources to implement this expensive mechanised technology as a routine procedure. With the current increase in drug resistance of M. tuberculosis [5], rapid and reliable DST methods are urgently required in the clinical mycobacteriology laboratory. Such techniques would not only aid patient management but also facilitate drug resistance surveillance, which is important in planning and evaluating TB control programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, Rist N, Smelev NA. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 1969; 41: 21–43.

    PubMed  CAS  Google Scholar 

  2. Kent PT, Kubica GP. (eds). Public Health Mycobacteriology: a guide for the level III laboratory. U.S. Department of Health and Human Services, Atlanta 1985.

    Google Scholar 

  3. Siddiqi SH, Libonati JP, Middlebrook G. Evaluation of rapid radiometric method for drug susceptibility testing of Mycobacterium tuberculosis. J Clin Microbiol 1981; 13: 908–912.

    PubMed  CAS  Google Scholar 

  4. Roberts GD, Goodman NL, Heifets L, Larsh HW, Lindner TH, McClatchy JK, McGinnis MR, Siddiqi SH, Wright P. Evaluation of the BACTEC radiometric method for recovery of mycobacteria and drug susceptibility testing of Mycobacterium tuberculosis from acid-fast smear-positive specimens. J Clin Microbiol 1983; 18: 689–696.

    PubMed  CAS  Google Scholar 

  5. Pablos-Mendez A, Raviglione MC, Laszlo A, Binkin N, Rieder HL, Bustreo F, Cohn DL, Lambregts-van Weezenbeek CS, Kim SJ, Chaulet P, Nunn P. Global surveillance for antituberculosis-drug resistance, 1994-1997. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance. N Engl J Med 1998; 338: 1641–1619.

    Article  PubMed  CAS  Google Scholar 

  6. Heifets L. Conventional methods for antimicrobial susceptibility testing of Mycobacterium tuberculosis, Chapter 8, 133–143. In: Bastian I, Portaels F (eds.), Multidrug-resistant tuberculosis. Kluwer Academic Publ., The Netherlands 2000.

    Chapter  Google Scholar 

  7. Takiff H. Molecular mechanisms of drug resistance, Chapter 6, 77–114. In: Bastian I, Portaels F (eds.), Multidrug-resistant tuberculosis. Kluwer Academic Publ., The Netherlands 2000.

    Chapter  Google Scholar 

  8. Cooksey RC, Morlock GP, McQueen A, Glickman SE, Crawford JT. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 1996; 40: 1186–8.

    PubMed  CAS  Google Scholar 

  9. Delgado MB, Telenti A. Detection of mutations associated with quinolone resistance in Mycobacterium tuberculosis. In Persing DH. (ed), Selected PCR Protocols for Emerging Infectious Diseases, American Society for Microbiology, Washington D.C. 1996.

    Google Scholar 

  10. Telenti A, Imboden P, Marchesi F, Lowrie D, Cole S, Colston MJ, Matter L, Schopfer K, Bodmer T. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341: 647–50.

    Article  PubMed  CAS  Google Scholar 

  11. Kapur V, Li LL, Iordanescu S, Hamrick MR, Wanger A, Kreiswirth BN, Musser JM. Characterization by automated DNA sequencing of mutations in the gene (rpo B) encoding the RNA Polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol 1994; 32: 1095–1098.

    PubMed  CAS  Google Scholar 

  12. Kapur V, Li LL, Hamrick MR, Plikaytis BB, Shinnick TM, Telenti A, Jacobs WR Jr, Banerjee A, Cole S, Yuen KY, Clarridge III JE, Kreiswirth BN, Musser JM. Rapid Mycobacterium species assignment and unambiguous identification of mutations associated with antimicrobial resistance in Mycobacterium tuberculosis by automated DNA sequencing. Arch Pathol Lab Med 1995; 119: 131–8.

    PubMed  CAS  Google Scholar 

  13. Pai S, Esen N, Pan X, Musser JM. Routine rapid Mycobacterium species assignment based on species-specific allelic variation in the 65-kilodalton heat shock protein gene (hsp 65). Arch Pathol Lab Med 1997; 121: 859–864.

    PubMed  CAS  Google Scholar 

  14. Heym B, Honore N, Truffot-Pernot C, Banerjee A, Schurra C, Jacobs WR Jr, van Embden JD, Grosset JH, Cole ST. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994; 344: 293–298.

    Article  PubMed  CAS  Google Scholar 

  15. Takiff HE, Salazar L, Guerrero C, Philipp W, Huang WM, Kreiswirth B, Cole ST, Jacobs WR Jr, Telenti A. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994; 38: 773–780.

    Article  PubMed  CAS  Google Scholar 

  16. 14. Telenti A, Imboden P, Marchesi F, Schmidheini T, Bodmer T. Direct, automated detection of rifampin-resistant Mycobacterium tuberculosis by Polymerase chain reaction and single-strand conformation polymorphism analysis. Antimicrob Agents Chemother 1993; 37: 2054–2058.

    Article  PubMed  CAS  Google Scholar 

  17. Pretorius GS, Sirgel FA, Schaaf HS, van Helden PD, Victor TC. Rifampicin resistance in Mycobacterium tuberculosis —rapid detection and implications in chemotherapy. S Afr Med J 1996; 86: 50–55.

    PubMed  CAS  Google Scholar 

  18. Scarpellini P, Braglia S, Brambilla AM, Dalessandro M, Cichero P, Gori A, Lazzarin A. Detection of rifampin resistance by single-strand conformation polymorphism analysis of cerebrospinal fluid of patients with tuberculosis of the central nervous system. J Clin Microbiol 1997; 35: 2802–2806.

    PubMed  CAS  Google Scholar 

  19. Williams DL, Waguespack C, Eisenach K, Crawford JT, Portaels F, Salfinger M, Nolan CM, Abe C, Sticht-Groh V, Gillis TP. Characterization of rifampin-resistance in pathogenic mycobacteria. Antimicrob Agents Chemother 1994; 38: 2380–2386.

    Article  PubMed  CAS  Google Scholar 

  20. Williams DL, Spring L, Gillis TP, Salfinger M, Persing DH. Evaluation of a polymerase chain reaction-based universal heteroduplex generator assay for direct detection of rifampin susceptibility of Mycobacterium tuberculosis from sputum specimens. Clin Infect Dis 1998; 26: 446–450.

    Article  PubMed  CAS  Google Scholar 

  21. De Beenhouwer H, Lhiang Z, Jannes G, Mijs W, Machtelinckx L, Rossau R, Traore H, Portaels F. Rapid detection of rifampicin resistance in sputum and biopsy specimens from tuberculosis patients by PCR and line probe assay. Tuber Lung Dis 1995; 76: 425–430.

    Article  PubMed  Google Scholar 

  22. Cooksey RC, Morlock GP, Glickman S, Crawford JT. Evaluation of a line probe assay kit for characterization of rpo B mutations in rifampin-resistant Mycobacterium tuberculosis isolates from New York City. J Clin Microbiol 1997; 35: 1281–283.

    PubMed  CAS  Google Scholar 

  23. Rossau R, Traore H, De Beenhouwer H, Mijs W, Jannes G, De Rijk P, Portaels F. Evaluation of the INNO-LiPA Rif. TB assay, a reverse hybridization assay for the simultaneous detection of Mycobacterium tuberculosis complex and its resistance to rifampin. Antimicrob Agents Chemother 1997; 41: 2093–2098.

    PubMed  CAS  Google Scholar 

  24. Gamboa F, Cardona PJ, Manterola JM, Lonca J, Matas L, Padilla E, Manzano JR, Ausina V. Evaluation of a commercial probe assay for detection of rifampin resistance in Mycobacterium tuberculosis directly from respiratory and nonrespiratory clinical samples. Eur J Clin Microbiol Infect Dis 1998; 17: 189–192.

    PubMed  CAS  Google Scholar 

  25. Gingeras TR, Ghandour G, Wang E, Berno A, Small PM, Drobniewski F, Alland D, Desmond E, Holodniy M, Drenkow J. Simultaneous genotyping and species identification using hybridization pattern recognition analysis of generic Mycobacterium DNA arrays. Genome Res 1998; 8: 435–448.

    PubMed  CAS  Google Scholar 

  26. Troesch A, Nguyen H, Miyada CG, Desvarenne S, Gingeras TR, Kaplan PM, Cros P, Mabilat C. Mycobacterium species identification and rifampin resistance testing with high-density DNA probe arrays. J Clin Microbiol 1999; 37: 49–55.

    PubMed  CAS  Google Scholar 

  27. Head SR, Parikh K, Rogers Y, Bishai W, Goelet P, Boyce-Jacino MT. Solid-phase sequence scanning for drug resistance detection in tuberculosis. Mol Cell Probes 1999; 13: 81–87.

    Article  PubMed  CAS  Google Scholar 

  28. Cooksey RC, Crawford JT, Jacobs WR Jr, Shinnick TM. A rapid method for screening antimicrobial agents for activities against a strain of Mycobacterium tuberculosis expressing firefly luciferase. Antimicrob Agents Chemother 1993; 37: 1348–1352.

    Article  PubMed  CAS  Google Scholar 

  29. Arain TM, Resconi AE, Singh DC, Stover CK. Reporter gene technology to assess activity of antimycobacterial agents in macrophages. Antimicrob Agents Chemother 1996; 40: 1542–1544.

    PubMed  CAS  Google Scholar 

  30. Arain TM, Resconi AE, Hickey MJ, Stover CK. Bioluminescence screening in vitro (Bio-Siv) assays for high-volume antimycobacterial drug discovery. Antimicrob Agents Chemother 1996; 40: 1536–1541.

    PubMed  CAS  Google Scholar 

  31. Hickey MJ, Arain TM, Shawar RM, Humble DJ, Langhorne MH, Morgenroth JN, Stover CK. Luciferase in vivo expression technology: use of recombinant mycobacterial reporter strains to evaluate antimycobacterial activity in mice. Antimicrob Agents Chemother 1996; 40: 400–407.

    PubMed  CAS  Google Scholar 

  32. Shawar RM, Humble DJ, Van Dalfsen JM, Stover CK, Hickey MJ, Steele S, Mitscher LA, Baker W. Rapid screening of natural products for antimycobacterial activity by using luciferase-expressing strains of Mycobacterium bovis BCG and Mycobacterium intracellulare. Antimicrob Agents Chemother 1997; 41: 570–574.

    PubMed  CAS  Google Scholar 

  33. Jacobs WR Jr, Barletta RG, Udani R, Chan J, Kalkut G, Sosne G, Kieser T, Sarkis GJ, Hatfull GF, Bloom BR. Rapid assessment of drug susceptibilities of Mycobacterium tuberculosis by means of luciferase reporter phages. Science 1993; 260: 819–822.

    Article  PubMed  CAS  Google Scholar 

  34. Carriere C, Riska PF, Zimhony O, Kriakov J, Bardarov S, Burns J, Chan J, Jacobs WR Jr. Conditionally replicating luciferase reporter phages: improved sensitivity for rapid detection and assessment of drug susceptibility of Mycobacterium tuberculosis. J Clin Microbiol 1997; 35: 3232–3239.

    PubMed  CAS  Google Scholar 

  35. Riska PF, Su Y, Bardarov S, Freundlich L, Sarkis G, Hatfull G, Carriere C, Kumar V, Chan J, Jacobs WR Jr. Rapid film-based determination of antibiotic susceptibilities of Mycobacterium tuberculosis strains by using a luciferase reporter phage and the Bronx Box. J Clin Microbiol 1999; 37: 1144–1149.

    PubMed  CAS  Google Scholar 

  36. Chung GA, Aktar Z, Jackson S, Duncan K. High-throughput screen for detecting antimycobacterial agents. Antimicrob Agents Chemother 1995; 39: 2235–2238.

    Article  PubMed  CAS  Google Scholar 

  37. Srivastava R, Kumar D, Srivastava BS. Recombinant Mycobacterium aurum expressing Escherichia coli beta-galactosidase in high throughput screening of antituberculosis drugs. Biochem Biophys Res Commun 1997; 240: 536–539.

    Article  PubMed  CAS  Google Scholar 

  38. Kremer L, Baulard A, Estaquier J, Poulain-Godefroy O, Locht C. Green fluorescent protein as a new expression marker in mycobacteria. Mol Microbiol 1995; 17: 913–922.

    Article  PubMed  CAS  Google Scholar 

  39. Collins LA, Torrero MN, Franzblau SG. Green fluorescent protein reporter microplate assay for high-throughput screening of compounds against Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42: 344–347.

    PubMed  CAS  Google Scholar 

  40. Srivastava R, Deb DK, Srivastava KK, Locht C, Srivastava BS. Green fluorescent protein as a reporter in rapid screening of antituberculosis compounds in vitro and in macrophages. Biochem Biophys Res Commun 1998; 253: 431–436.

    Article  PubMed  CAS  Google Scholar 

  41. Sreevatsan S, Bookout JB, Ringpis FM, Mogazeh SL, Kreiswirth BN, Pottathil RR, Barathur RR. Comparative Evaluation of Cleavase Fragment Length Polymorphism With PCR-SSCP and PCR-RFLP to Detect Antimicrobial Agent Resistance in Mycobacterium tuberculosis. Mol Diagn 1998; 3: 81–91.

    Article  PubMed  CAS  Google Scholar 

  42. Felmlee TA, Liu Q, Whelen AC, Williams D, Sommer SS, Persing DH. Genotypic detection of Mycobacterium tuberculosis rifampin resistance: comparison of single-strand conformation polymorphism and dideoxy fingerprinting. J Clin Microbiol 1995; 33: 1617–23.

    PubMed  CAS  Google Scholar 

  43. Liu YC, Huang TS, Huang WK, Chen CS, Tu HZ. Dideoxy fingerprinting for rapid screening of rpo B gene mutations in clinical isolates of Mycobacterium tuberculosis. J Formos Med Assoc 1998; 97: 400–404.

    PubMed  CAS  Google Scholar 

  44. Miyamoto J, Koga H, Kohno S, Tashiro T, Hara K. New drug susceptibility test for Mycobacterium tuberculosis using the hybridization protection assay. J Clin Microbiol 1996; 34: 1323–1326.

    PubMed  CAS  Google Scholar 

  45. Koga H, Miyamoto J, Ohno H, Ogawa K, Tomono K, Tashiro T, Kohno S. A rapid drug susceptibility test for Mycobacterium tuberculosis using the hybridization protection assay. J Antimicrob Chemother 1997; 40: 189–194.

    Article  PubMed  CAS  Google Scholar 

  46. Martin-Casabona N, Xairo Mimo D, Gonzalez T, Rossello J, Arcalis L. Rapid method for testing susceptibility of Mycobacterium tuberculosis by using DNA probes. J Clin Microbiol 1997; 35 2521–2525.

    PubMed  CAS  Google Scholar 

  47. Hellyer TJ, DesJardin LE, Teixeira L, Perkins MD, Cave MD, Eisenach KD. Detection of viable Mycobacterium tuberculosis by reverse transcriptase-strand displacement amplification of mRNA. J Clin Microbiol 1999; 37: 518–523.

    PubMed  CAS  Google Scholar 

  48. Nash KA, Gaytan A, Inderlied CB. Detection of rifampin resistance in Mycobacterium tuberculosis by use of a rapid, simple, and specific RNA/RNA mismatch assay. J Infect Dis 1997; 176: 533–536.

    Article  PubMed  CAS  Google Scholar 

  49. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, Alland D. Molecular beacon sequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 1998; 16: 359–363.

    Article  PubMed  CAS  Google Scholar 

  50. Hanna BA, Walters SB, Bonk SJ, Tick LJ. Recovery of mycobacteria from blood in mycobacteria growth indicator tube and Lowenstein-Jensen slant after lysiscentrifugation. J Clin Microbiol 1995; 33: 3315–3316.

    PubMed  CAS  Google Scholar 

  51. Badak FZ, Kiska DL, Setterquist S, Hartley C, O’Connell MA, Hopfer RL. Comparison of mycobacteria growth indicator tube with BACTEC 460 for detection and recovery of mycobacteria from clinical specimens. J Clin Microbiol 1996; 34: 2236–2239.

    PubMed  CAS  Google Scholar 

  52. Pfyffer GE, Welscher HM, Kissling P, Cieslak C, Casal MJ, Gutierrez J, Rusch-Gerdes S. Comparison of the Mycobacteria Growth Indicator Tube (MGIT) with radiometric and solid culture for recovery of acid-fast bacilli. J Clin Microbiol 1997; 35: 364–368.

    PubMed  CAS  Google Scholar 

  53. Reisner BS, Gatson AM, Woods GL. Evaluation of mycobacteria growth indicator tubes for susceptibility testing of Mycobacterium tuberculosis to isoniazid and rifampin. Diagn Microbiol Infect Dis 1995; 22: 325–329.

    Article  PubMed  CAS  Google Scholar 

  54. Palaci M, Ueki SY, Sato DN, Da Silva Telles MA, Curcio M, Silva EA. Evaluation of mycobacteria growth indicator tube for recovery and drug susceptibility testing of Mycobacterium tuberculosis isolates from respiratory specimens. J Clin Microbiol 1996; 34: 762–764.

    PubMed  CAS  Google Scholar 

  55. Walters SB, Hanna BA. Testing of susceptibility of Mycobacterium tuberculosis to isoniazid and rifampin by mycobacterium growth indicator tube method. J Clin Microbiol 1996; 34: 1565–1567.

    PubMed  CAS  Google Scholar 

  56. Bergmann JS, Woods GL. Mycobacterial growth indicator tube for susceptibility testing of Mycobacterium tuberculosis to isoniazid and rifampin. Diagn Microbiol Infect Dis 1997; 28: 153–156.

    Article  PubMed  CAS  Google Scholar 

  57. Bergmann JS, Woods GL. Reliability of mycobacteria growth indicator tube for testing susceptibility of Mycobacterium tuberculosis to ethambutol and streptomycin. J Clin Microbiol 1997; 35: 3325–3327.

    PubMed  CAS  Google Scholar 

  58. Morcillo N, Scipioni S, Vignoles M, Trovero A. Rapid diagnosis and susceptibility of Mycobacterium tuberculosis to antibiotics using MGIT system. Rev Argent Microbiol 1998; 30: 155–162.

    PubMed  CAS  Google Scholar 

  59. Palomino JC, Traore H, Fissette K, Portaels F. Evaluation of Mycobacteria Growth Indicator Tube (MGIT) for drug susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 1999; 3: 344–348.

    PubMed  CAS  Google Scholar 

  60. Hanna BA, Ebrahimzadeh A, Elliott LB, Morgan MA, Novak SM, Rusch-Gerdes S, Acio M, Dunbar DF, Holmes TM, Rexer CH, Savthyakumar C, Vannier AM. Multicenter evaluation of the BACTEC MGIT 960 system for recovery of mycobacteria. J Clin Microbiol 1999; 37: 748–752.

    PubMed  CAS  Google Scholar 

  61. Wilson SM, al-Suwaidi Z, McNerney R, Porter J, Drobniewski F. Evaluation of a new rapid bacteriophage-based method for the drug susceptibility testing of Mycobacterium tuberculosis. Nat Med 1997; 3: 465–468

    Article  PubMed  CAS  Google Scholar 

  62. McNerney R. TB: the return of the phage. A review of fifty years of mycobacteriophage research. Int J Tuberc Lung Dis 1999; 3: 179–184.

    PubMed  CAS  Google Scholar 

  63. AB BIODISK. Susceptibility testing of mycobacteria. Etest technical guide no. 5 AB BIODISK, N.A., Inc. Piscataway, N.J. 1996.

    Google Scholar 

  64. Lebrun L, Onody C, Vincent V, Nordmann P. Evaluation of the Etest for rapid susceptibility testing of Mycobacterium avium to Clarithromycin. J Antimicrob Chemother 1996; 37: 999–1003.

    Article  PubMed  CAS  Google Scholar 

  65. Biehle JR, Cavalieri SJ, Saubolle MA, Getsinger LJ. Evaluation of Etest for susceptibility testing of rapidly growing mycobacteria. J Clin Microbiol 1995; 33: 1760–1764

    PubMed  CAS  Google Scholar 

  66. Hoffner SE, Klintz L, Olsson-Liljequist B, Bolmstrom A. Evaluation of Etest for rapid susceptibility testing of Mycobacterium chelonae and M. fortuitum. J Clin Microbiol 1994; 32: 1846–1849.

    PubMed  CAS  Google Scholar 

  67. Koontz FP, Erwin ME, Barrett MS, Jones RN. Etest for routine clinical antimicrobial susceptibility testing of rapid-growing mycobacteria isolates. Diagn Microbiol Infect Dis 1994; 19: 183–186.

    Article  PubMed  CAS  Google Scholar 

  68. Wanger A, Mills K. Etest for susceptibility testing of Mycobacterium tuberculosis and Mycobacterium avium-intracellulare. Diagn Microbiol Infect Dis 1994; 19: 179–181.

    Article  PubMed  CAS  Google Scholar 

  69. Wanger A, Mills K. Testing of Mycobacterium tuberculosis susceptibility to ethambutol, isoniazid, rifampin, and streptomycin by using Etest. J Clin Microbiol 1996; 34: 1672–1676.

    PubMed  CAS  Google Scholar 

  70. Hausdorfer J, Sompek E, Allerberger F, Dierich MP, Rusch-Gerdes S. E-test for susceptibility testing of Mycobacterium tuberculosis. Int J Tuberc Lung Dis 1998; 2: 751–755.

    PubMed  CAS  Google Scholar 

  71. Novak SM, Hindler J, Bruckner DA. Reliability of two novel methods, alamar and E test, for detection of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 1993; 31: 3056–3057.

    PubMed  CAS  Google Scholar 

  72. Zabransky RJ, Dinuzzo AR, Woods GL. Detection of vancomycin resistance in enterococci by the Alamar MIC system. J Clin Microbiol 1995; 33: 791–793.

    PubMed  CAS  Google Scholar 

  73. Pfaller MA, Barry AL. Evaluation of a novel colorimetric broth microdilution method for antifungal susceptibility testing of yeast isolates. J Clin Microbiol 1994; 32: 1992–1996.

    PubMed  CAS  Google Scholar 

  74. Ahmed SA, Gogal Jr. RM, Walsh JE. A new rapid and simple non-radioactive assay to monitor and determine the proliferation of lymphocyte: an alternative to H3-thymidine incorporation assay. J Immunol Methods 1994; 170: 211–224.

    Article  PubMed  CAS  Google Scholar 

  75. Page B, Mage M, Noel C. A new fluorometric assay for cytoxicity measurements in vitro. Int J Oncol 1993; 3: 473–476.

    PubMed  CAS  Google Scholar 

  76. Yajko DM, Madej JJ, Lancaster MV, Sanders CA, Cawthon VL, Gee B, Babst A, Hadley WK. Colorimetric method for determining MICs of antimicrobial agents for Mycobacterium tuberculosis. J Clin Microbiol 1995; 33: 2324–2327.

    PubMed  CAS  Google Scholar 

  77. Collins L, Franzblau SG. Microplate alamar blue assay versus BACTEC 460 system for high-throughput screening of compounds against Mycobacterium tuberculosis and Mycobacterium avium. Antimicrob Agents Chemother 1997; 41: 1004–1009.

    PubMed  CAS  Google Scholar 

  78. Franzblau SG, Witzig RS, McLaughlin JC, Torres P, Madico G, Hernandez A, Degnan MT, Cook MB, Quenzer VK, Ferguson RM, Gilman RH. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J Clin Microbiol 1998; 36: 362–366.

    PubMed  CAS  Google Scholar 

  79. Palomino JC, Portaels F. Simple Procedure for Drug Susceptibility Testing of Mycobacterium tuberculosis Using a Commercial Colorimetric Assay. Eur J Clin Microbiol Infect Dis 1999; 18: 380–383.

    Article  PubMed  CAS  Google Scholar 

  80. Mshana RN, Tadesse G, Abate G, Miorner H. Use of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide for rapid detection of rifampin-resistant Mycobacterium tuberculosis. J Clin Microbiol 1998; 36: 1214–1219.

    PubMed  CAS  Google Scholar 

  81. Abate G, Mshana RN, Miorner H. Evaluation of a colorimetric assay based on 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Int J Tuberc Lung Dis 1998; 2: 1011–1016.

    PubMed  CAS  Google Scholar 

  82. Mejia GI, Castrillon L, Trujillo H, Robledo JA. Microcolony detection in 7H11 thin layer culture is an alternative for rapid diagnosis of Mycobacterium tuberculosis infection. Int J Tuberc Lung Dis 1999; 3: 138–142.

    PubMed  CAS  Google Scholar 

  83. Idigoras P, Perez-Trallero E, Alcorta M, Gutierrez C, Munoz-Baroja I. Rapid detection of tuberculous and non-tuberculous mycobacteria by microscopic observation of growth on Middlebrook 7H11 agar. Eur J Clin Microbiol Infect Dis 1995; 14: 6–10.

    Article  PubMed  CAS  Google Scholar 

  84. Welch DF, Guruswamy AP, Sides SJ, Shaw CH, Gilchrist MJ. Timely culture for mycobacteria which utilizes a microcolony method. J Clin Microbiol 1993; 31: 2178–2184.

    PubMed  CAS  Google Scholar 

  85. Schaberg T, Reichert B, Schulin T, Lode H, Mauch H. Rapid drug susceptibility testing of Mycobacterium tuberculosis using conventional solid media. Eur Respir J 1995; 8: 1688–1693.

    Article  PubMed  CAS  Google Scholar 

  86. Nilsson LE, Hoffher SE, Ansehn S. Rapid susceptibility testing of Mycobacterium tuberculosis by bioluminescence assay of mycobacterial ATP. Antimicrob Agents Chemother 1988; 32: 1208–1212.

    Article  PubMed  CAS  Google Scholar 

  87. Beckers B, Lang HR, Schimke D, Lammers A. Evaluation of a bioluminescence assay for rapid antimicrobial susceptibility testing of mycobacteria. Eur J Clin Microbiol 1985; 4: 556–561.

    Article  PubMed  CAS  Google Scholar 

  88. Garza-Gonzalez E, Guerrero-Olazaran M, Tijerina-Menchaca R, Viader-Salvado JM. Determination of drug susceptibility of Mycobacterium tuberculosis through mycolic acid analysis. J Clin Microbiol 1997; 35: 1287–1289.

    PubMed  CAS  Google Scholar 

  89. Moore AV, Kirk SM, Callister SM, Mazurek GH, Schell RF. Safe determination of susceptibility of Mycobacterium tuberculosis to antimycobacterial agents by flow cytometry. J Clin Microbiol 1999; 37: 479–483.

    PubMed  CAS  Google Scholar 

  90. Kirk SM, Schell RF, Moore AV, Callister SM, Mazurek GH. Flow cytometric testing of susceptibilities of Mycobacterium tuberculosis isolates to ethambutol, isoniazid, and rifampin in 24 hours. J Clin Microbiol 1998; 36: 1568–1573.

    PubMed  CAS  Google Scholar 

  91. Bergmann JS, Woods GL. Evaluation of the ESP culture system II for testing susceptibilities of Mycobacterium tuberculosis isolates to four primary antituberculous drugs. J Clin Microbiol 1998; 36: 2940–2943.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Palomino, J.C. (2000). Novel rapid antimicrobial susceptibility tests for Mycobacterium tuberculosis . In: Bastian, I., Portaels, F. (eds) Multidrug-resistant Tuberculosis. Resurgent and Emerging Infectious Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4084-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4084-3_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5794-3

  • Online ISBN: 978-94-011-4084-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics