Skip to main content

The molecular mechanisms of drug resistance in Mycobacterium tuberculosis

  • Chapter

Part of the book series: Resurgent and Emerging Infectious Diseases ((REID,volume 1))

Abstract

In the early 1990’s, when patients with acquired immunodeficiency syndrome (AIDS) in several large cities began dying with multidrugresistant (MDR) strains of Mycobacterium tuberculosis, there was considerable alarm and uncertainty [1,2]. The sudden and seemingly simultaneous appearance of many MDR strains raised the terrifying possibility that there was a single mechanism or mutation, perhaps carried on a plasmid or transposable element, that could confer resistance to several drugs and be transferred horizontally from strain to strain, as occurs in other bacteria [3,4]. Fears of “Andromeda-strain” scenarios receded after studies of MDR strains demonstrated that no single resistance mechanism was responsible. Rather, MDR strains were found to develop through the sequential occurrence of separate mutations, each conferring resistance to a single drug or class of drugs [5,6]. Finding the mutations that cause resistance to each of the antituberculosis drugs was a major focus of research in the 1990’s. The task was fairly straightforward for drugs that are also used against other pathogens, such as rifampicin (RIF), streptomycin (SM) and the fluoroquinolones (FQs), because the mechanisms were similar to those described in other bacteria. The real challenge was discovering the mutations that confer resistance to drugs that are specific for mycobacteria—isoniazid (INH), pyrazinamide (PZA) and ethambutol (EMB)—whose mechanisms of action were poorly understood. The study of the genes and mutations that cause resistance has not only unravelled the mechanisms of action of these antibiotics, but has also expanded our knowledge of the basic biology of the mycobacteria.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bloom BR, Murray CJ. Tuberculosis: commentary on a reemergent killer. Science 1992; 257: 1055–1064.

    Article  PubMed  CAS  Google Scholar 

  2. Centers for Disease Control. Transmission of multidrug-resistant tuberculosis among immunocompromised persons, correctional system-New York, 1991. JAMA 1992; 268: 855–856.

    Article  Google Scholar 

  3. Neu HC. The crisis in antibiotic resistance. Science 1992; 257: 1064–1073.

    Article  PubMed  CAS  Google Scholar 

  4. Poole K, Krebes K, McNally C, Neshat S. Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux Operon. J Bacteriol 1993; 175: 7363–7372.

    PubMed  CAS  Google Scholar 

  5. Heym B, Honore N, Truffot-Pernot C, et al. Implications of multidrug resistance for the future of short-course chemotherapy of tuberculosis: a molecular study. Lancet 1994; 344: 293–298.

    Article  PubMed  CAS  Google Scholar 

  6. Morris S, Bai GH, Suffys P, Portillo-Gomez L, Fairchok M, Rouse D. Molecular mechanisms of multiple drug resistance in clinical isolates of Mycobacterium tuberculosis. J Infect Dis 1995; 171: 954–960.

    Article  PubMed  CAS  Google Scholar 

  7. Maiden MC. Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Clin Infect Dis 1998; 27Suppl 1: S12–S20.

    Article  PubMed  CAS  Google Scholar 

  8. Spratt BG. Resistance to antibiotics mediated by target alterations. Science 1994; 264: 388–393.

    Article  PubMed  CAS  Google Scholar 

  9. Blanchard JS. Molecular mechanisms of drug resistance in Mycobacterium tuberculosis. Annu Rev Biochem 1996; 65: 215–239.

    Article  PubMed  CAS  Google Scholar 

  10. Cole ST, Telenti A. Drug resistance in Mycobacterium tuberculosis. Eur Respir J Suppl 1995; 20: 701s–713s.

    PubMed  CAS  Google Scholar 

  11. Musser JM. Antimicrobial agent resistance in mycobacteria: molecular genetic insights. Clin Microbiol Rev 1995; 8: 496–514.

    PubMed  CAS  Google Scholar 

  12. Davies J. Antibiotic resistance in mycobacteria. Novartis Found Symp 1998; 217: 195–205.

    Article  PubMed  CAS  Google Scholar 

  13. Ramaswamy S, Musser JM. Molecular genetic basis of antimicrobial agent resistance in Mycobacterium tuberculosis: 1998 update. Tuberc Lung Dis 1998; 79: 2–29.

    Article  Google Scholar 

  14. McKenzie D, Malone L, Kushner S, Oleson J, Subbarow J. The effect of nicotinic acid amide on experimental tuberculosis of white mice. Lab Clin Med 1948; 33: 1249–1253.

    CAS  Google Scholar 

  15. Zhang Y, Dhandayuthapani S, Deretic V. Molecular basis for the exquisite sensitivity of Mycobacterium tuberculosis to isoniazid. Proc Natl Acad Sci U S A 1996; 93: 13212–13216.

    Article  PubMed  CAS  Google Scholar 

  16. Yuan Y, Mead D, Schroeder BG, Zhu Y, Barry CE, 3rd. The biosynthesis of mycolic acids in Mycobacterium tuberculosis. Enzymatic methyl(ene) transfer to acyl carrier protein bound meromycolic acid in vitro. J Biol Chem 1998; 273: 21282–21290.

    Article  PubMed  CAS  Google Scholar 

  17. Deretic V, Song J, Pagan-Ramos E. Loss of oxyR in Mycobacterium tuberculosis. Trends Microbiol 1997; 5: 367–372.

    Article  PubMed  CAS  Google Scholar 

  18. Manca C, Paul S, Barry CE, 3rd, Freedman VH, Kaplan G. Mycobacterium tuberculosis catalase and peroxidase activities and resistance to oxidative killing in human monocytes in vitro. Infect Immun 1999; 67: 74–79.

    PubMed  CAS  Google Scholar 

  19. Scorpio A, Zhang Y. Mutations in pncA, a gene encoding pyrazinamidase/nicotinamidase, cause resistance to the antituberculous drug pyrazinamide in tubercle bacillus. Nat Med 1996; 2: 662–667.

    Article  PubMed  CAS  Google Scholar 

  20. Middlebrook G. Isoniazid-resistance and catalase activity of tubercle bacilli. Am Rev Tuberc 1954; 69: 471–472.

    PubMed  CAS  Google Scholar 

  21. Middlebrook G, and Cohn, M.L. Some observations on the pathogenicity of isoniazid-resistant variants of tubercle bacilli. Science 1953; 118: 297–299.

    Article  PubMed  CAS  Google Scholar 

  22. Zhang Y, Heym B, Allen B, Young D, Cole S. The catalase-peroxidase gene and isoniazid resistance of Mycobacterium tuberculosis. Nature 1992; 358: 591–593.

    Article  PubMed  CAS  Google Scholar 

  23. Zhang Y, Garbe T, Young D. Transformation with katG restores isoniazidsensitivity in Mycobacterium tuberculosis isolates resistant to a range of drug concentrations. Mol Microbiol 1993; 8: 521–524.

    Article  PubMed  CAS  Google Scholar 

  24. Stoeckle MY, Guan L, Riegler N, et al. Catalase-peroxidase gene sequences in isoniazid-sensitive and — resistant strains of Mycobacterium tuberculosis from New York City. J Infect Dis 1993; 168: 1063–1065.

    Article  PubMed  CAS  Google Scholar 

  25. Altamirano M, Marostenmaki J, Wong A, FitzGerald M, Black WA, Smith JA. Mutations in the catalase-peroxidase gene from isoniazid-resistant Mycobacterium tuberculosis isolates. J Infect Dis 1994; 169: 1162–1165.

    Article  PubMed  CAS  Google Scholar 

  26. Goto M, Oka S, Tachikawa N, et al. KatG sequence deletion is not the major cause of isoniazid resistance in Japanese and Yemeni Mycobacterium tuberculosis isolates. Mol Cell Probes 1995; 9: 433–439.

    Article  PubMed  CAS  Google Scholar 

  27. Cockerill FR, 3rd, Uhl JR, Temesgen Z, et al. Rapid identification of a point mutation of the Mycobacterium tuberculosis catalase-peroxidase (katG) gene associated with isoniazid resistance. J Infect Dis 1995; 171: 240–245.

    Article  PubMed  CAS  Google Scholar 

  28. Heym B, Alzari PM, Honore N, Cole ST. Missense mutations in the catalaseperoxidase gene, katG, are associated with isoniazid resistance in Mycobacterium tuberculosis. Mol Microbiol 1995; 15: 235–245.

    Article  PubMed  CAS  Google Scholar 

  29. Musser JM, Kapur V, Williams DL, Kreiswirth BN, van Soolingen D, van Embden JD. Characterization of the catalase-peroxidase gene (katG) and inhA locus in isoniazid-resistant and-susceptible strains of Mycobacterium tuberculosis by automated DNA sequencing: restricted array of mutations associated with drug resistance. J Infect Dis 1996; 173: 196–202.

    Article  PubMed  CAS  Google Scholar 

  30. Dobner P, Rusch-Gerdes S, Bretzel G, et al. Usefulness of Mycobacterium tuberculosis genomic mutations in the genes katG and inhA for the prediction of isoniazid resistance. Int J Tuberc Lung Dis 1997; 1: 365–369.

    PubMed  CAS  Google Scholar 

  31. Pretorius GS, van Helden PD, Sirgél F, Eisenach KD, Victor TC. Mutations in katG gene sequences in isoniazid-resistant clinical isolates of Mycobacterium tuberculosis are rare. Antimicrob Agents Chemother 1995; 39: 2276–2281.

    Article  PubMed  CAS  Google Scholar 

  32. Victor TC, Pretorius GS, Felix JV, Jordaan AM, van Helden PD, Eisenach KD. katG mutations in isoniazid-resistant strains of Mycobacterium tuberculosis are not infrequent. Antimicrob Agents Chemother 1996; 40: 1572.

    PubMed  CAS  Google Scholar 

  33. Marttila HJ, Soini H, Huovinen P, Viljanen MK. katG mutations in isoniazidresistant Mycobacterium tuberculosis isolates recovered from Finnish patients. Antimicrob Agents Chemother 1996; 40: 2187–2189.

    PubMed  CAS  Google Scholar 

  34. Rouse DA, Li Z, Bai GH, Morris SL. Characterization of the katG and inhA genes of isoniazid-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995; 39: 2472–2477.

    Article  PubMed  CAS  Google Scholar 

  35. Ferrazoli L, Palaci M, Telles MA, et al. Catalase expression, katG, and MIC of isoniazid for Mycobacterium tuberculosis isolates from Sao Paulo, Brazil. J Infect Dis 1995; 171: 237–240.

    Article  PubMed  CAS  Google Scholar 

  36. Saint-Joanis B, Souchon H, Wilming M, Johnsson K, Alzari PM, Cole ST. Use of site-directed mutagenesis to probe the structure, function and isoniazid activation of the catalase/peroxidase, KatG, from Mycobacterium tuberculosis. Biochem J 1999; 338: 753–760.

    Article  PubMed  CAS  Google Scholar 

  37. Wilson TM, de Lisle GW, Collins DM. Effect of inhA and katG on isoniazid resistance and virulence of Mycobacterium bovis. Mol Microbiol 1995; 15: 1009–1015.

    Article  PubMed  CAS  Google Scholar 

  38. Wengenack NL, Jensen MP, Rusnak F, Stern MK. Mycobacterium tuberculosis KatG is a peroxynitritase. Biochem Biophys Res Commun 1999; 256: 485–487.

    Article  PubMed  CAS  Google Scholar 

  39. Wengenack NL, Uhl JR, St. Amand AL, et al. Recombinant Mycobacterium tuberculosis KatG(S315T) is a competent catalase-peroxidase with reduced activity toward isoniazid. J Infect Dis 1997; 176: 722–727.

    Article  PubMed  CAS  Google Scholar 

  40. Marttila HJ, Soini H, Eerola E, et al. A Ser315Thr substitution in KatG is predominant in genetically heterogeneous multidrug-resistant Mycobacterium tuberculosis isolates originating from the St. Petersburg area in Russia. Antimicrob Agents Chemother 1998; 42: 2443–2445.

    PubMed  CAS  Google Scholar 

  41. Johnsson K, Schultz PG. Mechanistic studies of the oxidation of isoniazid by the catalase peroxidase from Mycobacterium tuberculosis. J Am Chem Soc 1994; 116: 7425–7426.

    Article  CAS  Google Scholar 

  42. Shoeb HA, Bowman BU, Ottolenghi AC, Merola AJ. Enzymatic and nonenzymatic superoxide-generating reactions of isoniazid. Antimicrob Agents Chemother 1985; 27: 408–412.

    Article  PubMed  CAS  Google Scholar 

  43. Johnsson K, King DS, Schultz PG. Studies on the mechanism of action of isoniazid and ethionamide in the chemotherapy of tuberculosis. J Am Chem Soc 1995; 117: 5009–5010.

    Article  CAS  Google Scholar 

  44. Wilming M, Johnsson K. Spontaneous formation of the bioactive form of the tuberculosis drug isoniazid. Angew Chem Int Ed 1999; 38: 2588–2590.

    Article  CAS  Google Scholar 

  45. Winder FG, Collins PB. Inhibition by isoniazid of synthesis of mycolic acids in Mycobacterium tuberculosis. J Gen Microbiol 1970; 63: 41–48.

    Article  PubMed  CAS  Google Scholar 

  46. Quemard A, Lacave C, Laneelle G. Isoniazid inhibition of mycolic acid synthesis by cell extracts of sensitive and resistant strains of Mycobacterium aurum. Antimicrob Agents Chemother 1991; 35: 1035–1039.

    Article  PubMed  CAS  Google Scholar 

  47. Winder FG. Mode of action of the antimycobacterial agents and associated aspects of the molecular biology of the Mycobacteria, p.354–438. In: Ratledge C, Stanford J (eds.), The Biology of the Mycobacteria. Academic Press, San Diego, 1982.

    Google Scholar 

  48. Banerjee A, Dubnau E, Quemard A, et al. inhA, a gene encoding a target for isoniazid and ethionamide in Mycobacterium tuberculosis. Science 1994; 263: 227–230.

    Article  PubMed  CAS  Google Scholar 

  49. Quemard A, Sacchettini JC, Dessen A, et al. Enzymatic characterization of the target for isoniazid in Mycobacterium tuberculosis. Biochemistry 1995; 34: 8235–8241.

    Article  PubMed  CAS  Google Scholar 

  50. Basso LA, Zheng R, Musser JM, Jacobs WR, Jr., Blanchard JS. Mechanisms of isoniazid resistance in Mycobacterium tuberculosis: enzymatic characterization of enoyl reductase mutants identified in isoniazid-resistant clinical isolates. J Infect Dis 1998; 178: 769–775.

    Article  PubMed  CAS  Google Scholar 

  51. Rozwarski DA, Grant GA, Barton DHR, Jacobs WR, Jr., Sacchettini JC. Modification of the NADH of the isoniazid target (InhA) from Mycobacterium tuberculosis. Science 1998; 279: 98–102.

    Article  PubMed  CAS  Google Scholar 

  52. Canetti G. Present aspects of bacterial resistance in tuberculosis. Am Rev Respir Dis 1965; 92: 687–703.

    PubMed  CAS  Google Scholar 

  53. Lefford MJ. The ethionamide sensitivity of British pre-treatment strains of Mycobacterium tuberculosis. Tubercle 1966; 47: 198–206.

    Article  PubMed  CAS  Google Scholar 

  54. Winder FG, Collins PB, Whelan D. Effects of ethionamide and isoxyl on mycolic acid synthesis in Mycobacterium tuberculosis BCG. J Gen Microbiol 1971; 66: 379–380.

    Article  PubMed  CAS  Google Scholar 

  55. Quemard A, Laneelle G, Lacave C. Mycolic acid synthesis: a target for ethionamide in mycobacteria? Antimicrob Agents Chemother 1992; 36: 1316–1321.

    Article  PubMed  CAS  Google Scholar 

  56. McMurry LM, McDermott PF, Levy SB. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob Agents Chemother 1999; 43: 711–713.

    Article  PubMed  CAS  Google Scholar 

  57. Slayden RA, Barry CEI. The Genetics and Biochemistry of Isoniazid Resistance in Mycobacterium tuberculosis. Microbes and Infection (in press).

    Google Scholar 

  58. Mdluli K, Sherman DR, Hickey MJ, et al. Biochemical and genetic data suggest that InhA is not the primary target for activated isoniazid in Mycobacterium tuberculosis. J Infect Dis 1996; 174: 1085–1090.

    Article  PubMed  CAS  Google Scholar 

  59. Mdluli K, Slayden RA, Zhu Y, et al. Inhibition of a Mycobacterium tuberculosis beta-ketoacyl ACP synthase by isoniazid. Science 1998; 280: 1607–1610.

    Article  PubMed  CAS  Google Scholar 

  60. Piatek AS, Telenti A, Murray MR, et al. Genotypic analysis of Mycobacterium tuberculosis in two distinct populations using molecular beacons: implications for rapid susceptibility testing. Manuscript submitted.

    Google Scholar 

  61. Lee AS, Lim IH, Tang LL, Telenti A, Wong SY. Contribution of kasA analysis to detection of isoniazid-resistant Mycobacterium tuberculosis in Singapore. Antimicrob Agents Chemother 1999; 43: 2087–2089.

    PubMed  CAS  Google Scholar 

  62. Bloch K. Fatty acid synthases from Mycobacterium phlei. Methods Enzymol 1975; 35: 84–90.

    Article  PubMed  CAS  Google Scholar 

  63. Zhang Y. Life without KatG. Trends Microbiol 1996; 4: 415–416.

    Article  PubMed  CAS  Google Scholar 

  64. Deretic V, Pagan-Ramos E, Zhang Y, Dhandayuthapani S, Via LE. The extreme sensitivity of Mycobacterium tuberculosis to the front-line antituberculosis drug isoniazid. Nat Biotechnol 1996; 14: 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  65. Rosner JL. Susceptibilities of oxyR regulon mutants of Escherichia coli and Salmonella typhimurium to isoniazid. Antimicrob Agents Chemother 1993; 37: 2251–2253.

    Article  PubMed  CAS  Google Scholar 

  66. Rosner JL, Storz G. Effects of peroxides on susceptibilities of Escherichia coli and Mycobacterium smegmatis to isoniazid. Antimicrob Agents Chemother 1994; 38: 1829–1833.

    Article  PubMed  CAS  Google Scholar 

  67. Sherman DR, Sabo PJ, Hickey MJ, et al. Disparate responses to oxidative stress in saprophytic and pathogenic mycobacteria. Proc Natl Acad Sci U S A 1995; 92: 6625–6629.

    Article  PubMed  CAS  Google Scholar 

  68. Deretic V, Philipp W, Dhandayuthapani S, et al. Mycobacterium tuberculosis is a natural mutant with an inactivated oxidative-stress regulatory gene: implications for sensitivity to isoniazid. Mol Microbiol 1995; 17: 889–900.

    Article  PubMed  CAS  Google Scholar 

  69. Dhandayuthapani S, Zhang Y, Mudd MH, Deretic V. Oxidative stress response and its role in sensitivity to isoniazid in mycobacteria: characterization and inducibility of ahpC by peroxides in Mycobacterium smegmatis and lack of expression in M. aurum and M. tuberculosis. J Bacteriol 1996; 178: 3641–3649.

    PubMed  CAS  Google Scholar 

  70. Yuan Y, Lee RE, Besra GS, Belisle JT, Barry CE, 3rd. Identification of a gene involved in the biosynthesis of cyclopropanated mycolic acids in Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 1995; 92: 6630–6634.

    Article  PubMed  CAS  Google Scholar 

  71. Chan J, Fujiwara T, Brennan P, et al. Microbial glycolipids: possible virulence factors that scavenge oxygen radicals. Proc Natl Acad Sci USA 1989; 86: 2453–2457.

    Article  PubMed  CAS  Google Scholar 

  72. Pagan-Ramos E, Song J, McFalone M, Mudd MH, Deretic V. Oxidative stress response and characterization of the oxyR-ahpC and furA-katG loci in Mycobacterium marinum. J Bacteriol 1998; 180: 4856–4864.

    PubMed  CAS  Google Scholar 

  73. Wilson TM, Collins DM. ahpC, a gene involved in isoniazid resistance of the Mycobacterium tuberculosis complex. Mol Microbiol 1996; 19: 1025–1034.

    Article  PubMed  CAS  Google Scholar 

  74. Heym B, Stavropoulos E, Honore N, et al. Effects of overexpression of the alkyl hydroperoxide reductase AhpC on the virulence and isoniazid resistance of Mycobacterium tuberculosis. Infect Immun 1997; 65: 1395–1401.

    PubMed  CAS  Google Scholar 

  75. Sherman DR, Mdluli K, Hickey MJ, et al. Compensatory ahpC gene expression in isoniazid-resistant Mycobacterium tuberculosis. Science 1996; 272: 1641–1643.

    Article  PubMed  CAS  Google Scholar 

  76. Wilson T, de Lisle GW, Marcinkeviciene JA, Blanchard JS, Collins DM. Antisense RNA to ahpC, an oxidative stress defence gene involved in isoniazid resistance, indicates that AhpC of Mycobacterium bovis has virulence properties. Microbiology 1998; 144: 2687–2695.

    Article  PubMed  CAS  Google Scholar 

  77. Kelley CL, Rouse DA, Morris SL. Analysis of ahpC gene mutations in isoniazidresistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1997; 41: 2057–2058.

    PubMed  CAS  Google Scholar 

  78. Sreevatsan S, Pan X, Zhang Y, Deretic V, Musser JM. Analysis of the oxyR-ahpC region in isoniazid-resistant and-susceptible Mycobacterium tuberculosis complex organisms recovered from diseased humans and animals in diverse localities. Antimicrob Agents Chemother 1997; 41: 600–606.

    PubMed  CAS  Google Scholar 

  79. Miesel L, Weisbrod TR, Marcinkeviciene JA, et al. NADH dehydrogenase defects confer isoniaazid resistance and conditional lethality in Mycobacterium smegmatis. J Bacteriol 1998; 180: 2459–2467

    PubMed  CAS  Google Scholar 

  80. Payton M, Auty R, Delgoda R, Everett M, Sim E. Cloning and characterization of arylamine N-acetyltransferase genes from Mycobacterium smegmatis and Mycobacterium tuberculosis: increased expression results in isoniazid resistance. J Bacteriol 1999; 181: 1343–1347.

    PubMed  CAS  Google Scholar 

  81. Choudhuri BS, Sen S, Chakrabarti P. Isoniazid accumulation in Mycobacterium smegmatis is modulated by proton motive force-driven and ATP-dependent extrusion systems. Biochem Biophys Res Commun 1999; 256: 682–684.

    Article  PubMed  CAS  Google Scholar 

  82. Heifets L, Lindholm-Levy P. Pyrazinamide sterilizing activity in vitro against semidormant Mycobacterium tuberculosis bacterial populations. Am Rev Respir Dis 1992; 145: 1223–1225.

    Article  PubMed  CAS  Google Scholar 

  83. McClatchy JK, Tsang AY, Cernich MS. Use of pyrazinamidase activity on Mycobacterium tuberculosis as a rapid method for determination of pyrazinamide susceptibility. Antimicrob Agents Chemother 1981; 20: 556–557.

    Article  PubMed  CAS  Google Scholar 

  84. Konno K, Feldmann FM, McDermott W. Pyrazinamide susceptibility and amidase activity of tubercle bacilli. Am Rev Respir Dis 1967; 95: 461–469.

    PubMed  CAS  Google Scholar 

  85. Foster JW, Moat AG. Nicotinamide adenine dinucleotide biosynthesis and Pyridine nucleotide cycle metabolism in microbial systems. Microbiol Rev 1980; 44: 83–105.

    PubMed  CAS  Google Scholar 

  86. Sun Z, Zhang Y. Reduced pyrazinamidase activity and the natural resistance of Mycobacterium kansasii to the antituberculosis drug pyrazinamide. Antimicrob Agents Chemother 1999; 43: 537–542.

    PubMed  CAS  Google Scholar 

  87. Sreevatsan S, Pan X, Zhang Y, Kreiswirth BN, Musser JM. Mutations associated with pyrazinamide resistance in pncA of Mycobacterium tuberculosis complex organisms. Antimicrob Agents Chemother 1997; 41: 636–640.

    PubMed  CAS  Google Scholar 

  88. Marttila HJ, Marjamaki M, VyshneVskaya E, et al. pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis isolates from northwestern Russia. Antimicrob Agents Chemother 1999; 43: 1764–1766.

    PubMed  CAS  Google Scholar 

  89. Scorpio A, Lindholm-Levy P, Heifets L, et al. Characterization of pncA mutations in pyrazinamide-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 1997; 41: 540–543.

    PubMed  CAS  Google Scholar 

  90. Mestdagh M, Fonteyne PA, Realini L, et al. Relationship between pyrazinamide resistance, loss of pyrazinamidase activity, and mutations in the pncA locus in multidrug-resistant clinical isolates of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1999; 43: 2317–2319.

    PubMed  CAS  Google Scholar 

  91. Hirano K, Takahashi M, Kazumi Y, Fukasawa Y, Abe C. Mutation in pncA is a major mechanism of pyrazinamide resistance in Mycobacterium tuberculosis. Tuberc Lung Dis 1998; 78: 117–122.

    Article  Google Scholar 

  92. Salfinger M, Heifets LB. Determination of pyrazinamide MICs for Mycobacterium tuberculosis at different pHs by the radiometric method. Antimicrob Agents Chemother 1988; 32: 1002–1004.

    Article  PubMed  CAS  Google Scholar 

  93. Cutler RR, Wilson P, Villarroel J, Clarke FV. Evaluating current methods for determination of the susceptibility of mycobacteria to pyrazinamide, conventional, radiometric Bactec and two methods of pyrazinamidase testing. Lett Appl Microbiol 1997; 24: 127–32.

    Article  PubMed  CAS  Google Scholar 

  94. Lemaitre N, Sougakoff W, Truffot-Pernot C, Jarlier V. Characterization of new mutations in pyrazinamide-resistant strains of Mycobacterium tuberculosis and identification of conserved regions important for the catalytic activity of the pyrazinamidase PncA. Antimicrob Agents Chemother 1999; 43: 1761–1763.

    PubMed  CAS  Google Scholar 

  95. Konno K, Feldman FM, McDermott W. Nicotinamidase in mycobacteria: A method for distinguishing bovine type tubercle bacilli from other mycobacteria. Nature 1959; 184.

    Google Scholar 

  96. Wayne LG. Simple pyrazinamidase and urease tests for routine identification of mycobacteria. Am Rev Respir Dis 1974; 109: 147–151.

    PubMed  CAS  Google Scholar 

  97. Scorpio A, Collins D, Whipple D, Cave D, Bates J, Zhang Y. Rapid differentiation of bovine and human tubercle bacilli based on a characteristic mutation in the bovine pyrazinamidase gene. J Clin Microbiol 1997; 35: 106–110.

    PubMed  CAS  Google Scholar 

  98. Boshoff HI, Mizrahi V. Purification, gene cloning, targeted knockout, overexpression, and biochemical characterization of the major pyrazinamidase from Mycobacterium smegmatis. J Bacteriol 1998; 180: 5809–5814.

    PubMed  CAS  Google Scholar 

  99. Zhang Y, Scorpio A, Nikaido H, Sun Z. Role of acid pH and deficient efflux of pyrazinoic acid in unique susceptibility of Mycobacterium tuberculosis to pyrazinamide. J Bacteriol 1999; 181: 2044–2049.

    PubMed  CAS  Google Scholar 

  100. Kucers A, Bennett NM. The Use of Antibiotics. William Heinemann Medical Books Ltd, London, 1979.

    Google Scholar 

  101. Mikusova K, Slayden RA, Besra GS, Brennan PJ. Biogenesis of the mycobacterial cell wall and the site of action of ethambutol. Antimicrob Agents Chemother 1995; 39: 2484–2489.

    Article  PubMed  CAS  Google Scholar 

  102. Brennan PJ, Nikaido H. The envelope of mycobacteria. Annu Rev Biochem 1995; 64: 29–63. transport. J Bacteriol 1998;180: 6773-5.

    Article  PubMed  CAS  Google Scholar 

  103. Belanger AE, Besra GS, Ford ME, et al. The embAB genes of Mycobacterium avium encode an arabinosyl transferase involved in cell wall arabinan biosynthesis that is the target for the antimycobacterial drug ethambutol. Proc Natl Acad Sci U S A 1996; 93: 11919–11924.

    Article  PubMed  CAS  Google Scholar 

  104. Telenti A, Philipp WJ, Sreevatsan S, et al. The emb operon, a gene cluster of Mycobacterium tuberculosis involved in resistance to ethambutol. Nat Med 1997; 3: 567–570.

    Article  PubMed  CAS  Google Scholar 

  105. Sreevatsan S, Stockbauer KE, Pan X, et al. Ethambutol resistance in Mycobacterium tuberculosis: critical role oiemb B mutations. Antimicrob Agents Chemother 1997; 41: 1677–1681.

    PubMed  CAS  Google Scholar 

  106. Alcaide F, Pfyffer GE, Telenti A. Role embB in natural and acquired resistance to ethambutol in mycobacteria. Antimicrob Agents Chemother 1997; 41: 2270–2273.

    PubMed  CAS  Google Scholar 

  107. Sensi P, Maggi N, Furesz S, Maffii G. Chemical modifications and biological properties of rifamycins. Antimicrob Agents Chemother 1966; 6: 699–714.

    PubMed  CAS  Google Scholar 

  108. Jin DJ, Zhou YN. Mutational analysis of structure-function relationship of RNA Polymerase in Escherichia coli. Methods Enzymol 1996; 273: 300–319.

    Article  PubMed  CAS  Google Scholar 

  109. McClure WR, Cech CL, Johnston DE. A steady state assay for the RNA Polymerase initiation reaction. J Biol Chem 1978; 253: 8941–8948.

    PubMed  CAS  Google Scholar 

  110. Levin ME, Hatfull GF. Mycobacterium smegmatis RNA Polymerase: DNA supercoiling, action of rifampicin and mechanism of rifampicin resistance. Mol Microbiol 1993; 8: 277–285.

    Article  PubMed  CAS  Google Scholar 

  111. Jin DJ, Gross CA. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 1988; 202: 45–58.

    Article  PubMed  CAS  Google Scholar 

  112. Cole ST, Barrell BG. Analysis of the genome of Mycobacterium tuberculosis H37Rv. Novartis Found Symp 1998; 217: 160–172.

    Article  PubMed  CAS  Google Scholar 

  113. Miller LP, Crawford JT, Shinnick TM. The rpoB gene of Mycobacterium tuberculosis. Antimicrob Agents Chemother 1994; 38: 805–811.

    Article  PubMed  CAS  Google Scholar 

  114. Taniguchi H, Aramaki H, Nikaido Y, et al. Rifampicin resistance and mutation of the rpoB gene in Mycobacterium tuberculosis. FEMS Microbiol Lett 1996; 144: 103–108.

    Article  PubMed  CAS  Google Scholar 

  115. Kapur V, Li LL, Iordanescu S, et al. Characterization by automated DNA sequencing of mutations in the gene (rpoB) encoding the RNA Polymerase beta subunit in rifampin-resistant Mycobacterium tuberculosis strains from New York City and Texas. J Clin Microbiol 1994; 32: 1095–1098.

    PubMed  CAS  Google Scholar 

  116. Telenti A, Imboden P, Marchesi F, et al. Detection of rifampicin-resistance mutations in Mycobacterium tuberculosis. Lancet 1993; 341: 647–650.

    Article  PubMed  CAS  Google Scholar 

  117. Williams DL, Waguespack C, Eisenach K, et al. Characterization of rifampinresistance in pathogenic mycobacteria. Antimicrob Agents Chemother 1994; 38: 2380–2386.

    Article  PubMed  CAS  Google Scholar 

  118. Williams DL, Spring L, Collins L, et al. Contribution of rpoB mutations to development of rifamycin cross-resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42: 1853–1857.

    PubMed  CAS  Google Scholar 

  119. Moghazeh SL, Pan X, Arain T, Stover CK, Musser JM, Kreiswirth BN. Comparative antimycobacterial activities of rifampin, rifapentine, and KRM-1648 against a collection of rifampin-resistant Mycobacterium tuberculosis isolates with known rpoB mutations. Antimicrob Agents Chemother 1996; 40: 2655–2657.

    PubMed  CAS  Google Scholar 

  120. Bodmer T, Zurcher G, Imboden P, Telenti A. Mutation position and type of substitution in the beta-subunit of the RNA Polymerase influence in-vitro activity of rifamycins in rifampicin-resistant Mycobacterium tuberculosis. J Antimicrob Chemother 1995; 35: 345–348.

    Article  PubMed  CAS  Google Scholar 

  121. Hetherington SV, Watson AS, Patrick CC. Sequence and analysis of the rpoB gene of Mycobacterium smegmatis. Antimicrob Agents Chemother 1995; 39: 2164–2166.

    Article  PubMed  CAS  Google Scholar 

  122. Quan S, Venter H, Dabbs ER. Ribosylative inactivation of rifampin by Mycobacterium smegmatis is a principal contributor to its low susceptibility to this antibiotic. Antimicrob Agents Chemother 1997; 41: 2456–2460.

    PubMed  CAS  Google Scholar 

  123. Andersen SJ, Quan S, Gowan B, Dabbs ER. Monooxygenase-like sequence of a Rhodococcus equi gene conferring increased resistance to rifampin by inactivating this antibiotic. Antimicrob Agents Chemother 1997; 41: 218–221.

    PubMed  CAS  Google Scholar 

  124. Portillo-Gomez L, Nair J, Rouse DA, Morris SL. The absence of genetic markers for streptomycin and rifampicin resistance in Mycobacterium avium complex strains. J Antimicrob Chemother 1995; 36: 1049–1053.

    Article  PubMed  CAS  Google Scholar 

  125. Guerrero C, Stockman L, Marchesi F, Bodmer T, Roberts GD, Telenti A. Evaluation of the rpoB gene in rifampicin-susceptible and-resistant Mycobacterium avium and Mycobacterium intracellulare. J Antimicrob Chemother 1994; 33: 661–663.

    Article  PubMed  CAS  Google Scholar 

  126. Hui J, Gordon N, Kajioka R. Permeability barrier to rifampin in mycobacteria. Antimicrob Agents Chemother 1977; 11: 773–779.

    Article  PubMed  CAS  Google Scholar 

  127. Honore N, Cole ST. Molecular basis of rifampin resistance in Mycobacterium leprae. Antimicrob Agents Chemother 1993; 37: 414–418.

    Article  PubMed  CAS  Google Scholar 

  128. Breckenridge L, Gorini L. Genetic analysis of streptomycin resistance in Escherichia coli. Genetics 1970; 65: 9–25.

    PubMed  CAS  Google Scholar 

  129. Allen PN, Noller HF. Mutations in ribosomal proteins S4 and S12 influence the higher order structure of 16 S ribosomal RNA. J Mol Biol 1989; 208: 457–468.

    Article  PubMed  CAS  Google Scholar 

  130. Moazed D, Noller HF. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 1987; 327: 389–394.

    Article  PubMed  CAS  Google Scholar 

  131. Funatsu G, Wittmann HG. Ribosomal proteins. 33. Location of amino-acid replacements in protein S12 isolated from Escherichia coli mutants resistant to streptomycin. J Mol Biol 1972; 68: 547–50.

    Article  PubMed  CAS  Google Scholar 

  132. Liu XQ, Gillham NW, Boynton JE. Chloroplast ribosomal protein gene rps12 of Chlamydomonas reinhardtii. Wild-type sequence, mutation to streptomycin resistance and dependence, and function in Escherichia coli. J Biol Chem 1989; 264: 16100–16108.

    PubMed  CAS  Google Scholar 

  133. Ruusala T, Andersson D, Ehrenberg M, Kurland CG. Hyper-accurate ribosomes inhibit growth. Embo J 1984; 3: 2575–2580.

    PubMed  CAS  Google Scholar 

  134. Katsukawa C, Tamaru A, Miyata Y, Abe C, Makino M, Suzuki Y. Characterization of the rpsL and rrs genes of streptomycin-resistant clinical isolates of Mycobacterium tuberculosis in Japan. J Appl Microbiol 1997; 83: 6346–40.

    Article  Google Scholar 

  135. Honore N, Cole ST. Streptomycin resistance in mycobacteria. Antimicrob Agents Chemother 1994; 38: 238–242.

    Article  PubMed  CAS  Google Scholar 

  136. Cooksey RC, Morlock GP, McQueen A, Glickman SE, Crawford JT. Characterization of streptomycin resistance mechanisms among Mycobacterium tuberculosis isolates from patients in New York City. Antimicrob Agents Chemother 1996; 40: 1186–1188.

    PubMed  CAS  Google Scholar 

  137. Bock A, Petzet A, Piepersberg W. Ribosomal ambiguity (ram) mutations facilitate diyhydrostreptomycin binding to ribosomes. FEBS Lett 1979; 104: 317–321.

    Article  PubMed  CAS  Google Scholar 

  138. Kaji H, Tanaka Y. Binding of dihydrostreptomycin to ribosomal subunits. J Mol Biol 1968; 32: 221–230.

    Article  PubMed  CAS  Google Scholar 

  139. Schreiner G, Nierhaus KH. Protein involved in the binding of dihydrostreptomycin to ribosomes of Escherichia coli. J Mol Biol 1973; 81: 71–82.

    Article  PubMed  CAS  Google Scholar 

  140. Stern S, Weiser B, Noller HF. Model for the three-dimensional folding of 16 S ribosomal RNA. J Mol Biol 1988; 204: 447–481.

    Article  PubMed  CAS  Google Scholar 

  141. Stern S, Powers T, Changchien LM, Noller HF. Interaction of ribosomal proteins S5, S6, S11, S12, S18 and S21 with 16 S rRNA. J Mol Biol 1988; 201: 683–695.

    Article  PubMed  CAS  Google Scholar 

  142. Bottger EC. Resistance to drugs targeting protein synthesis in mycobacteria. Trends Microbiol 1994; 2: 416–421.

    Article  PubMed  CAS  Google Scholar 

  143. Powers T, Noller HF. A functional pseudoknot in 16S ribosomal RNA. Embo J 1991; 10: 2203–2214.

    PubMed  CAS  Google Scholar 

  144. Woese CR, Gutell RR. Evidence for several higher order structural elements in ribosomal RNA. Proc Natl Acad Sci U S A 1989; 86: 3119–3122.

    Article  PubMed  CAS  Google Scholar 

  145. Powers T, Noller HF. Evidence for functional interaction between elongation factor Tu and 16S ribosomal RNA. Proc Natl Acad Sci U S A 1993; 90: 1364–1368.

    Article  PubMed  CAS  Google Scholar 

  146. Van Ryk DI, Dahlberg AE. Structural changes in the 530 loop of Escherichia coli 16S rRNA in mutants with impaired translational fidelity. Nucleic Acids Res 1995; 23: 3563–3570.

    Article  PubMed  Google Scholar 

  147. Sander P, Meier A, Bottger EC. rpsL +: a dominant selectable marker for gene replacement in mycobacteria. Mol Microbiol 1995; 16: 991–1000.

    Article  PubMed  CAS  Google Scholar 

  148. Melancon P, Lemieux C, Brakier-Gingras L. A mutation in the 530 loop of Escherichia coli 16S ribosomal RNA causes resistance to streptomycin. Nucleic Acids Res 1988; 16: 9631–9639.

    Article  PubMed  CAS  Google Scholar 

  149. Harris EH, Burkhart BD, Gillham NW, Boynton JE. Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 1989; 123: 281–292.

    PubMed  CAS  Google Scholar 

  150. Montandon PE, Nicolas P, Schurmann P, Stutz E. Streptomycin-resistance of Euglena gracilis chloroplasts: identification of a point mutation in the 16S rRNA gene in an invariant position. Nucleic Acids Res 1985; 13: 4299–4310.

    Article  PubMed  CAS  Google Scholar 

  151. Gauthier A, Turmel M, Lemieux C. Mapping of chloroplast mutations conferring resistance to antibiotics in Chlamydomonas: evidence for a novel site of streptomycin resistance in the small subunit rRNA. Mol Gen Genet 1988; 214: 192–197.

    Article  PubMed  CAS  Google Scholar 

  152. Bercovier H, Kafri O, Sela S. Mycobacteria possess a surprisingly small number of ribosomal RNA genes in relation to the size of their genome. Biochem Biophys Res Commun 1986; 136: 1136–1141.

    Article  PubMed  CAS  Google Scholar 

  153. Meier A, Kirschner P, Bange FC, Vogel U, Bottger EC. Genetic alterations in streptomycin-resistant Mycobacterium tuberculosis: mapping of mutations conferring resistance. Antimicrob Agents Chemother 1994; 38: 228–233.

    Article  PubMed  CAS  Google Scholar 

  154. Honore N, Marchai G, Cole ST. Novel mutation in 16S rRNA associated with streptomycin dependence in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1995; 39: 769–770.

    Article  PubMed  CAS  Google Scholar 

  155. Sreevatsan S, Pan X, Stockbauer KE, Williams DL, Kreiswirth BN, Musser JM. Characterization of rpsL and rrs mutations in streptomycin-resistant Mycobacterium tuberculosis isolates from diverse geographic localities. Antimicrob Agents Chemother 1996; 40: 1024–1026.

    PubMed  CAS  Google Scholar 

  156. Mitchison DA. The segregation of streptomycin-resistant variants of Mycobacterium tuberculosis into groups with characteristic levels of resistance. J Gen Microbiol 1951; 5: 596–604.

    Article  PubMed  CAS  Google Scholar 

  157. Meier A, Sander P, Schaper KJ, Scholz M, Bottger EC. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. Antimicrob Agents Chemother 1996; 40: 2452–2454.

    PubMed  CAS  Google Scholar 

  158. Benveniste R, Davies J. Mechanisms of antibiotic resistance in bacteria. Ann Rev Biochem 1973; 42: 471–506.

    Article  PubMed  CAS  Google Scholar 

  159. Sundin GW, Bender CL. Dissemination of the strA-strB streptomycin-resistance genes among commensal and pathogenic bacteria from humans, animals, and plants. Mol Ecol 1996; 5: 133–143.

    Article  PubMed  CAS  Google Scholar 

  160. Hooper DC, Wolfson JS. Fluoroquinolone antimicrobial agents. N Engl J Med 1991; 324: 384–394.

    Article  PubMed  CAS  Google Scholar 

  161. Chen CH, Shih JF, Lindholm-Levy PJ, Heifets LB. Minimal inhibitory concentrations of rifabutin, Ciprofloxacin, and Ofloxacin against Mycobacterium tuberculosis isolated before treatment of patients in Taiwan. Am Rev Respir Dis 1989; 140: 987–989.

    Article  PubMed  CAS  Google Scholar 

  162. Muder RR, Brennen C, Goetz AM, Wagener MM, Rihs JD. Association with prior fluoroquinolone therapy of widespread Ciprofloxacin resistance among gram-negative isolates in a Veterans Affairs medical center. Antimicrob Agents Chemother 1991; 35: 256–258.

    Article  PubMed  CAS  Google Scholar 

  163. Sullivan EA, Kreiswirth BN, Palumbo L, et al. Emergence of fluoroquinoloneresistant tuberculosis in New York City. Lancet 1995; 345: 1148–1150.

    Article  PubMed  CAS  Google Scholar 

  164. Drlica K, Xu C, Wang JY, Burger RM, Malik M. Fluoroquinolone action in mycobacteria: similarity with effects in Escherichia coli and detection by cell lysate viscosity. Antimicrob Agents Chemother 1996; 40: 1594–1599.

    PubMed  CAS  Google Scholar 

  165. Everett MJ, Jin YF, Ricci V, Piddock LJ. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob Agents Chemother 1996; 40: 2380–2386.

    PubMed  CAS  Google Scholar 

  166. Riesenfeld C, Everett M, Piddock LJ, Hall BG. Adaptive mutations produce resistance to Ciprofloxacin. Antimicrob Agents Chemother 1997; 41: 2059–2060.

    PubMed  CAS  Google Scholar 

  167. Lounis N, Ji B, Truffot-Pernot C, Grosset J. Which aminoglycoside or fluoroquinolone is more active against Mycobacterium tuberculosis in mice? Antimicrob Agents Chemother 1997; 41: 607–610.

    PubMed  CAS  Google Scholar 

  168. Zhao BY, Pine R, Domagala J, Drlica K. Fluoroquinolone action against clinical isolates of Mycobacterium tuberculosis: effects of a C-8 methoxyl group on survival in liquid media and in human macrophages. Antimicrob Agents Chemother 1999; 43: 661–666.

    PubMed  CAS  Google Scholar 

  169. Wang JC. DNA topoisomerases. Ann Rev Biochem 1996; 65: 635–692.

    Article  PubMed  CAS  Google Scholar 

  170. Drlica K. Mechanism of fluoroquinolone action. Current Opinion in Microbiology 1999; 2: 504–508.

    Article  PubMed  CAS  Google Scholar 

  171. Willmott CJ, Critchlow SE, Eperon IC, Maxwell A. The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA Polymerase. J Mol Biol 1994; 242: 351–363.

    Article  PubMed  CAS  Google Scholar 

  172. Maxwell A. DNA gyrase as a drug target. Trends Microbiol 1997; 5: 102–109.

    Article  PubMed  CAS  Google Scholar 

  173. Kato J, Suzuki H, Ikeda H. Purification and characterization of DNA topoisomerase IV in Escherichia coli. J Biol Chem 1992; 267: 25676–25684.

    PubMed  CAS  Google Scholar 

  174. Adams DE, Shekhtman EM, Zechiedrich EL, Schmid MB, Cozzarelli NR. The role of topoisomerase IV in partitioning bacterial replicons and the structure of catenated intermediates in DNA replication. Cell 1992; 71: 277–288.

    Article  PubMed  CAS  Google Scholar 

  175. Huang WM. Bacterial diversity based on type II DNA topoisomerase genes. Ann Rev Genet 1996; 30: 79–107.

    Article  PubMed  CAS  Google Scholar 

  176. Morais Cabrai JH, Jackson AP, Smith CV, Shikotra N, Maxwell A, Liddington RC. Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 1997; 388: 903–906.

    Article  Google Scholar 

  177. Ferrero L, Cameron B, Manse B, et al. Cloning and primary structure of Staphylococcus aureus DNA topoisomerase IV: a primary target of fluoroquinolones. Mol Microbiol 1994; 13: 641–653.

    Article  PubMed  CAS  Google Scholar 

  178. Yoshida H, Bogaki M, Nakamura M, Nakamura S. Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrob Agents Chemother 1990; 34: 1271–1272.

    Article  PubMed  CAS  Google Scholar 

  179. Stein DC, Danaher RJ, Cook TM. Characterization of a gyrB mutation responsible for low-level nalidixic acid resistance in Neisseria gonorrhoeae. Antimicrob Agents Chemother 1991; 35: 622–626.

    Article  PubMed  CAS  Google Scholar 

  180. Yamagishi J, Yoshida H, Yamayoshi M, Nakamura S. Nalidixic acid-resistant mutations of the gyrB gene of Escherichia coli. Mol Gen Genet 1986; 204: 367–373.

    Article  PubMed  CAS  Google Scholar 

  181. Takahashi H, Kikuchi T, Shoji S, et al. Characterization of gyrA, gyrB, grlA and grlB mutations in fluoroquinolone-resistant clinical isolates of Staphylococcus aureus. J Antimicrob Chemother 1998; 41: 49–57.

    Article  PubMed  CAS  Google Scholar 

  182. Tanaka M, Onodera Y, Uchida Y, Sato K. Quinolone resistance mutations in the GrlB protein of Staphylococcus aureus. Antimicrob Agents Chemother 1998; 42: 3044–3046.

    PubMed  CAS  Google Scholar 

  183. Takiff HE, Salazar L, Guerrero C, et al. Cloning and nucleotide sequence of Mycobacterium tuberculosis gyrA and gyrB genes and detection of quinolone resistance mutations. Antimicrob Agents Chemother 1994; 38: 773–780.

    Article  PubMed  CAS  Google Scholar 

  184. Cole ST, Brosch R, Parkhill J, et al. Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998; 393: 537–544.

    Article  PubMed  CAS  Google Scholar 

  185. Horowitz DS, Wang JC. Mapping the active site tyrosine of Escherichia coli DNA gyrase. J Biol Chem 1987; 262: 5339–5344.

    PubMed  CAS  Google Scholar 

  186. Nakamura S. Mechanisms of quinolone resistance. J Infect Chemother 1997; 3: 128–138.

    Article  CAS  Google Scholar 

  187. Alangaden GJ, Manavathu EK, Vakulenko SB, Zvonok NM, Lerner SA. Characterization of fluoroquinolone-resistant mutant strains of Mycobacterium tuberculosis selected in the laboratory and isolated from patients. Antimicrob Agents Chemother 1995; 39: 1700–1703.

    Article  PubMed  CAS  Google Scholar 

  188. Williams KJ, Chan R, Piddock LJ. gyrA of ofloxacin-resistant clinical isolates of Mycobacterium tuberculosis from Hong Kong. J Antimicrob Chemother 1996; 37: 1032–1034.

    Article  PubMed  CAS  Google Scholar 

  189. Revel V, Cambau E, Jarlier V, Sougakoff W. Characterization of mutations in Mycobacterium smegmatis involved in resistance to fluoroquinolones. Antimicrob Agents Chemother 1994; 38: 1991–1996.

    Article  PubMed  CAS  Google Scholar 

  190. Cambau E, Sougakoff W, Besson M, Truffot-Pernot C, Grosset J, Jarlier V. Selection of a gyrA mutant of Mycobacterium tuberculosis resistant to fluoroquinolones during treatment with Ofloxacin. J Infect Dis 1994; 170: 479–483.

    Article  PubMed  CAS  Google Scholar 

  191. Xu C, Kreiswirth BN, Sreevatsan S, Musser JM, Drlica K. Fluoroquinolone resistance associated with specific gyrase mutations in clinical isolates of multidrug-resistant Mycobacterium tuberculosis. J Infect Dis 1996; 174: 1127–1130.

    Article  PubMed  CAS  Google Scholar 

  192. Ito H, Yoshida H, Bogaki-Shonai M, Niga T, Hattori H, Nakamura S. Quinolone resistance mutations in the DNA gyrase gyrA and gyrB genes of Staphylococcus aureus. Antimicrob Agents Chemother 1994; 38: 2014–2023.

    Article  PubMed  CAS  Google Scholar 

  193. Conrad S, Oethinger M, Kaifel K, Klotz G, Marre R, Kern WV. gyrA mutations in high-level fluoroquinolone-resistant clinical isolates of Escherichia coli. J Antimicrob Chemother 1996; 38: 443–455.

    Article  PubMed  CAS  Google Scholar 

  194. Deplano A, Zekhnini A, Allali N, Couturier M, Struelens MJ. Association of mutations in grlA and gyrA topoisomerase genes with resistance to Ciprofloxacin in epidemic and sporadic isolates of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 1997; 41: 2023–2025.

    PubMed  CAS  Google Scholar 

  195. Guillemin I, Jarlier V, Cambau E. Correlation between quinolone susceptibility patterns and sequences in the A and B subunits of DNA gyrase in mycobacteria. Antimicrob Agents Chemother 1998; 42: 2084–2088.

    PubMed  CAS  Google Scholar 

  196. Kocagoz T, Hackbarth CJ, Unsal I, Rosenberg EY, Nikaido H, Chambers HF. Gyrase mutations in laboratory-selected, fluoroquinolone-resistant mutants of Mycobacterium tuberculosis H37Ra. Antimicrob Agents Chemother 1996; 40: 1768–1774.

    PubMed  CAS  Google Scholar 

  197. Nikaido H. Multidrug efflux pumps of gram-negative bacteria. J Bacteriol 1996; 178: 5853–5859.

    PubMed  CAS  Google Scholar 

  198. Kaatz GW, Seo SM. Mechanisms of fluoroquinolone resistance in genetically related strains of Staphylococcus aureus. Antimicrob Agents Chemother 1997; 41: 2733–2737.

    PubMed  CAS  Google Scholar 

  199. Poole K, Gotoh N, Tsujimoto H, et al. Overexpression of the mexC-mexD-oprJ efflux Operon in nfxB-type multidrug-resistant strains of Pseudomonas aeruginosa. Mol Microbiol 1996; 21: 713–724.

    Article  PubMed  CAS  Google Scholar 

  200. Sun L, Sreedharan S, Plummer K, Fisher LM. NorA plasmid resistance to fluoroquinolones: role of copy number and norA frameshift mutations. Antimicrob Agents Chemother 1996; 40: 1665–1669.

    PubMed  CAS  Google Scholar 

  201. Hillen W, Schollmeier K, Gatz C. Control of expression of the Tn10-encoded tetracycline resistance operon. II. Interaction of RNA Polymerase and TET repressor with the tet operon regulatory region. J Mol Biol 1984; 172: 185–201.

    Article  PubMed  CAS  Google Scholar 

  202. Takiff HE, Cimino M, Musso MC, et al. Efflux pump of the proton antiporter family confers low-level fluoroquinolone resistance in Mycobacterium smegmatis. Proc Natl Acad Sci USA 1996; 93: 362–366.

    Article  PubMed  CAS  Google Scholar 

  203. Liu J, Takiff HE, Nikaido H. Active efflux of fluoroquinolones in Mycobacterium smegmatis mediated by LfrA, a multidrug efflux pump. J Bacteriol 1996; 178: 3791–3795.

    PubMed  CAS  Google Scholar 

  204. Sander S, De Rossi E, Böddinghaus B, et al. Contribution of the multidrug efflux pump LfrA to innate mycobacterial drug resistance, (manuscript submitted).

    Google Scholar 

  205. Dong Y, Xu C, Zhao X, Domagala J, Drlica K. Fluoroquinolone action against mycobacteria: effects of C-8 substituents on growth, survival, and resistance. Antimicrob Agents Chemother 1998; 42: 2978–2984.

    PubMed  CAS  Google Scholar 

  206. Dong Y, Zhao X, Domagala J, Drlica K. Effect of fluoroquinolone concentration on selection of resistant mutants of Mycobacterium bovis BCG and Staphylococcus aureus. Antimicrob Agents Chemother 1999; 43: 1756–1758.

    PubMed  CAS  Google Scholar 

  207. Piddock LJ, Johnson M, Ricci V, Hill SL. Activities of new fluoroquinolones against fluoroquinolone-resistant pathogens of the lower respiratory tract. Antimicrob Agents Chemother 1998; 42: 2956–2960.

    PubMed  CAS  Google Scholar 

  208. Pan XS, Fisher LM. Targeting of DNA gyrase in Streptococcus pneumoniae by Sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones. Antimicrob Agents Chemother 1997; 41: 471–474.

    PubMed  CAS  Google Scholar 

  209. Martin SJ, Meyer JM, Chuck SK, Jung R, Messick CR, Pendland SL. Levofloxacin and Sparfloxacin: new quinolone antibiotics. Ann Pharmacother 1998; 32: 320–336.

    Article  PubMed  CAS  Google Scholar 

  210. Herr EB, Jr., Redstone MO. Chemical and physical characterization of capreomycin. Ann N Y Acad Sci 1966; 135: 940–946.

    Article  PubMed  CAS  Google Scholar 

  211. Edson RS, Terrell CL. The aminoglycosides. Mayo Clin Proc 1999; 74: 519–528.

    PubMed  CAS  Google Scholar 

  212. Rastogi N, Labrousse V, Goh KS. In vitro activities of fourteen antimicrobial agents against drug susceptible and resistant clinical isolates of Mycobacterium tuberculosis and comparative intracellular activities against the virulent H37Rv strain in human macrophages. Curr Microbiol 1996; 33: 167–175.

    Article  PubMed  CAS  Google Scholar 

  213. Ho YI, Chan CY, Cheng AF. In-vitro activities of aminoglycoside-aminocyclitols against mycobacteria. J Antimicrob Chemother 1997; 40: 27–32.

    Article  PubMed  CAS  Google Scholar 

  214. Rheinberger H-J, Geigenmüeller U, Gnirke A, et al. Allosteric three-site model for the ribosomal elongation cycle. In: Hill WE, Dahlberg A, Garrett RA, Moore PB, Schlessinger D, Warner JR (eds.), The Ribosome Structure, Function & Evolution. American Society for Microbiology, Washington, D.C., 1990.

    Google Scholar 

  215. Yamada T, Mizugichi Y, Nierhaus KH, Wittmann HG. Resistance to viomycin conferred by RNA of either ribosomal subunit. Nature 1978; 275: 460–461.

    Article  PubMed  CAS  Google Scholar 

  216. Koseki Y, Okamoto S. Studies on cross-resistance between capreomycin and certain other anti-mycobacterial agents. Jap. J. M. Sc. & Biol. 1963; 16: 31–38.

    CAS  Google Scholar 

  217. McClatchy JK, Kanes W, Davidson PT, Moulding TS. Cross-resistance in M. tuberculosis to kanamycin, capreomycin and viomycin. Tubercle 1977; 58: 29–34.

    Article  PubMed  CAS  Google Scholar 

  218. Alangaden GJ, Kreiswirth BN, Aouad A, et al. Mechanism of resistance to amikacin and kanamycin in Mycobacterium tuberculosis. Antimicrob Agents Chemother 1998; 42: 1295–1297.

    PubMed  CAS  Google Scholar 

  219. Tsukamura M, Mizuno S. Cross-resistant relationships among the aminoglucoside antibiotics in Mycobacterium tuberculosis. J Gen Microbiol 1975; 88: 269–274.

    Article  PubMed  CAS  Google Scholar 

  220. Sander P, Prammananan T, Bottger EC. Introducing mutations into a chromosomal rRNA gene using a genetically modified eubacterial host with a single rRNA Operon. Mol Microbiol 1996; 22: 841–848.

    Article  PubMed  CAS  Google Scholar 

  221. Suzuki Y, Katsukawa C, Tamaru A, et al. Detection of kanamycin-resistant Mycobacterium tuberculosis by identifying mutations in the 16S rRNA gene. J Clin Microbiol 1998; 36: 1220–1225.

    PubMed  CAS  Google Scholar 

  222. Taniguchi H, Chang B, Abe C, Nikaido Y, Mizuguchi Y, Yoshida SI. Molecular analysis of kanamycin and viomycin resistance in Mycobacterium smegmatis by use of the conjugation system. J Bacteriol 1997; 179: 4795–4801.

    PubMed  CAS  Google Scholar 

  223. Prammananan T, Sander P, Brown BA, et al. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J Infect Dis 1998; 177: 1573–1581.

    Article  PubMed  CAS  Google Scholar 

  224. Davies J, Wright GD. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol 1997; 5: 234–240.

    Article  PubMed  CAS  Google Scholar 

  225. Shaw KJ, Rather PN, Hare RS, Miller GH. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiol Rev 1993; 57: 138–163.

    PubMed  CAS  Google Scholar 

  226. Ainsa JA, Perez E, Pelicic V, Berthet FX, Gicquel B, Martin C. Aminoglycoside 2’-N-acetyltransferase genes are universally present in mycobacteria: characterization of the aac(2’)-Ic gene from Mycobacterium tuberculosis and the aac(2’)-Id gene from Mycobacterium smegmatis. Mol Microbiol 1997; 24: 431–441.

    Article  PubMed  CAS  Google Scholar 

  227. Ainsa JA, Blokpoel MC, Otal I, Young DB, De Smet KA, Martin C. Molecular cloning and characterization of Tap, a putative multidrug efflux pump present in Mycobacterium fortuitum and Mycobacterium tuberculosis. J Bacteriol 1998; 180: 5836–5843.

    PubMed  CAS  Google Scholar 

  228. Cundliffe E. How antibiotic-producing organisms avoid suicide. Annu Rev Microbiol 1989; 43: 207–233.

    Article  PubMed  CAS  Google Scholar 

  229. Fourmy D, Recht MI, Blanchard SC, Puglisi JD. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 1996; 274: 1367–1371.

    Article  PubMed  CAS  Google Scholar 

  230. Reitz RH, Slade HD, Neuhaus FC. The biochemical mechanisms of resistance by streptococci to the antibiotics D-cycloserine and O-carbamyl-D-serine. Biochemistry 1967; 6: 2561–2570.

    Article  PubMed  CAS  Google Scholar 

  231. Caceres NE, Harris NB, Wellehan JF, Feng Z, Kapur V, Barletta RG. Overexpression of the D-alanine racemase gene confers resistance to D-cycloserine in Mycobacterium smegmatis. J Bacteriol 1997; 179: 5046–5055.

    PubMed  CAS  Google Scholar 

  232. David HL, Goldman DS, Takayama K. Inhibition of the synthesis of wax D peptidoglycolipid of Mycobacterium tuberculosis by D-cycloserine. Infect Immun 1970; 1: 74–77.

    PubMed  CAS  Google Scholar 

  233. Zygmunt WA. Antagonism of D-cycloserine inhibition of mycobacterial growth by D-alanine. J. Bacteriol. 1963; 85: 1217–1220.

    CAS  Google Scholar 

  234. David HL. Resistance to D-cycloserine in the tubercle bacilli: mutation rate and transport of alanine in parental cells and drug-resistant mutants. Appl Microbiol 1971; 21: 888–892.

    PubMed  CAS  Google Scholar 

  235. Bhatt A, Green R, Coles R, Condon M, Connell ND. A mutant of Mycobacterium smegmatis defective

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Takiff, H.E. (2000). The molecular mechanisms of drug resistance in Mycobacterium tuberculosis . In: Bastian, I., Portaels, F. (eds) Multidrug-resistant Tuberculosis. Resurgent and Emerging Infectious Diseases, vol 1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4084-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4084-3_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5794-3

  • Online ISBN: 978-94-011-4084-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics