Skip to main content

Size Distribution of Grains or Subgrains, Dislocation Density and Dislocation Character by Using the Dislocation Model of Strain Anisotropy in X-Ray Line Profile Analysis

  • Chapter
Investigations and Applications of Severe Plastic Deformation

Part of the book series: NATO Science Series ((ASHT,volume 80))

Abstract

Anisotropic strain broadening in X-ray line profile analysis means that the breadth or the Fourier coefficients of diffraction profiles are not a monotonous function of the diffraction angle. The lack of a physically sound model makes the interpretation of line broadening difficult or even impossible. Dislocations are anisotropic lattice imperfections with anisotropic contrast effects in diffraction. It has been suggested recently that anisotropic X-ray line broadening is caused by dislocations. The classical procedures of Williamson and Hall, and Warren and Averbach are suggested to be replaced by the modified Williamson-Hall plot and the modified Warren-Averbach method in which the modulus of the diffraction vector or its square, g or g 2, are replaced by g \( {\bar{C}^{{1/2}}} \) or g 2 \( \bar{C} \), respectively, where \( \bar{C} \) are the average dislocation contrast factors. A straightforward procedure has been elaborated to separate size and strain broadening which enables to determine particle size and size distribution and the structure of dislocations in terms of dislocation densities and the character of dislocations in polycrystalline or submicron grain size materials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Suortti, P., (1993) Bragg Reflection Profile Shape in X-ray powder diffraction patterns, in The Rietveld Method, edited by R. A. Young, IUCr Monographs on Crystallography, Vol. 5, Oxford University Press, p. 167–185.

    Google Scholar 

  2. Delhez, R., deKeijser, Th. H., Langford, J. I., Louër, D., Mittemeijer, E. J. & Sonneveld, J., (1993) Crystal Imperfection Broadening and Peak Shape in the Rietveld Method in The Rietveld Method, edited by R. A. Young, IUCr Monographs on Crystallography, Vol. 5, Oxford University Press, p. 132–166.

    Google Scholar 

  3. Williamson, G. K. and Hall, W. H., (1953) X-Ray Line Broadening from filed aluminium and wolfram, Acta Metall., 1, 22–31.

    Article  CAS  Google Scholar 

  4. Warren, B. E. (1959) X-ray studies of deformed metals, Progr. Metal Phys. 8, 147–202.

    Article  CAS  Google Scholar 

  5. Caglioti, G., Paoletti, A. & Ricci, F. P., (1958) Choice of collimators for a crystal spectrometer for neutron diffraction, Nucl. Instrum. 3, 223–228.

    Article  CAS  Google Scholar 

  6. Latroche, M., Rodrigues-Carvajal, J., Pecheron-Guegan, A. and Bouree-Vigneron, F., (1995) Structural studies of LaNi4CoD6.11 and LaNi3.55Mn0.4Al0.3Co0.75D5.57 by means of neutron powder diffraction, J. Alloys and Compounds, 218, 64–72.

    Article  CAS  Google Scholar 

  7. Stephens, P. W., (1998) Phenomenological model of anisotropic peak broadening in powder diffraction, J. Appl Cryst., 32 281–289.

    Article  Google Scholar 

  8. Le Bail, A. & Jouanneaux, A., (1997) A Qualitative account for anisotropic broadening in whole-powder-diffraction-pattern fitting by second-rank tensors, J. Appl. Cryst. 30, 265–271.

    Article  Google Scholar 

  9. P. Scardi, (1999) A new whole-powder pattern-fitting approach, in Analysis of Real Structure of Matter, eds. H.-J. Bunge, J. Fiala and R. L. Snyder, IUCr series, Oxford Univ. Press, in press.

    Google Scholar 

  10. Fischer, J. E., Bendele, G., Dinnebier, R., Stephens, P. W., Lin, C. L., Bykovetz, N. and Zhu, Q., (1995) Structural analysis of fullerene and füllende solids from synchrotron x-ray powder diffraction, J. Phys. Chem. Solids, 56, 1445–1457.

    Article  CAS  Google Scholar 

  11. Reimann, K. and Wuerschum, R. (1997) Distribution of internal strains in nanocrystalline Pd studied by x-ray diffraction, J. Appl. Phys., 81, 7186–7192.

    Article  CAS  Google Scholar 

  12. Ungár, T. and Borbély, A. (1996) The effect of dislocation contrast on X-ray line broadening: a new approach to line profile analysis, Appl. Phys. Lett., 69, 3173–3175.

    Article  Google Scholar 

  13. Ungár, T. and Tichy, Gy., (1999) The effect of dislocation contrasts on X-ray line profiles in untextured polycrystals, Phys. Stat. Sol., 171, 425–434.

    Article  Google Scholar 

  14. Ungár, T., Dragomir, I., Révész, Á. and Borbély, Á., (1999) The contrast factors of dislocations in cubic crystals: the dislocation model of strain anisotropy in practice J. Appl. Cryst., in press.

    Google Scholar 

  15. Ungár, T., Borbély, A., Goren-Muginstein, G. R., Berger, S. and Rosen, A. R. (1999) Particle-size, size distribution and dislocations in nanocrystalline tungsten-carbide, Nanostructured Mater., 11, 103–113.

    Article  Google Scholar 

  16. M. A. Krivoglaz, (1969) in Theory of X-ray and Thermal Neutron Scattering by real Crystals, Plenum Press, N. Y.

    Google Scholar 

  17. M. A. Krivoglaz, (1969) in X-ray and Neutron Diffraction in Nonideal Crystals, Springer-Verlag, Berlin, Heidelberg, New York.

    Google Scholar 

  18. Wilkens, M., (1970) The determination of density and distribution of dislocations in deformed single crystals from broadened x-ray diffraction profiles, Phys. Stat. Sol. (a) 2, 359–370.

    Article  Google Scholar 

  19. Groma, I., Ungár, T. and Wilkens, M. (1988) Asymmetric X-Ray Line Broadening of Plastically Deformed Crystals. Part I: Theory, J. Appl. Cryst., 21, 47–53.

    Article  Google Scholar 

  20. Hirsh, P. B., Howie, A., Nicholson, R. B., Pashley, D. W. and Whealen, M. J., Electron Microscopy of Thin Crystals, Butterworths, London.

    Google Scholar 

  21. Klimanek, P. and Kuzel Jr., R. (1988–89) X-ray diffraction line broadening due to dislocations in non-cubic materials. I-III., J. Appl. Cryst., 21, 59–66

    Article  Google Scholar 

  22. Klimanek, P. and Kuzel Jr., R. (1988–89) X-ray diffraction line broadening due to dislocations in non-cubic materials. I-III., J. Appl. Cryst., 21, 363–368

    Article  Google Scholar 

  23. Klimanek, P. and Kuzel Jr., R. (1988–89) X-ray diffraction line broadening due to dislocations in non-cubic materials. I-III., J. Appl. Cryst., 22, 299–307.

    Google Scholar 

  24. Wilkens, M., (1987) X-ray line broadening and mean square strains of straight dislocations in elastically anisotropic crystals of cubic symmetry, Phys. Stat. Sol. (a) 104, K1–K6.

    Article  Google Scholar 

  25. Ungár, T., Alexandrov, I. and Hanák, P. (1999) Grain and Subgrain size-distribution and dislocation densities in severely deformed copper determined by a new procedure of X-ray line profile analysis, in the present Proceedings.

    Google Scholar 

  26. Ungár, T., Ott, S., Sanders, P. G., Borbély, A. and Weertman, J. R., (1998) Dislocations, grain size and planar faults in nanostructured copper determined by high resolution x-ray diffraction and a new procedure of peak profile analysis, Acta Mater., 10, 3693–3699.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ungár, T. (2000). Size Distribution of Grains or Subgrains, Dislocation Density and Dislocation Character by Using the Dislocation Model of Strain Anisotropy in X-Ray Line Profile Analysis. In: Lowe, T.C., Valiev, R.Z. (eds) Investigations and Applications of Severe Plastic Deformation. NATO Science Series, vol 80. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4062-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4062-1_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6281-4

  • Online ISBN: 978-94-011-4062-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics