Skip to main content

Cellular Mechanisms of Target Antigen Attack in Experimental Autoimmune Myasthenia Gravis

  • Chapter
Myasthenia Gravis

Abstract

Myasthenia gravis (MG) is a T cell-dependent, antibody-mediated autoimmune neuromuscular disease. Autoantibodies directed against the nicotinic acetylcholine receptor (AChR) activate the complement cascade after binding to AChR. This results in a functional decrease in the AChR at the neuromuscular junction, which leads to neuromuscular transmission defects and culminates in weakness and fatigue of skeletal muscles in MG patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Tzartos S.J., T. Barkas, M.T. Cung, A. Mamalaki, M. Marraud, P. Orlewski, D. Papanastasiou, C. Sakarellos, M. Sakarellos-Daitsiotis, P. Tsantili, and V. Tsikaris. 1998. Anatomy of the antigenic structure of a large membrane antigen, the muscle-type nicotinic acetylcholine receptor. Immunol. Rev. 163: 89.

    Article  PubMed  CAS  Google Scholar 

  2. Vincent A. and N. Willcox. 1994. Characterization of specific T cells in myasthenia gravis. Immunol. Today 15: 41.

    Article  PubMed  CAS  Google Scholar 

  3. Bell J., L. Rassenti, S. Smoot, K. Smith, C. Newby, R. Hohlfeld, K. Toyka, H. McDevitt and L. Steinman. 1986. HLA-DQ beta-chain polymorphism linked to myasthenia gravis. Lancet 8489: 1058.

    Article  Google Scholar 

  4. Hjelmström P., R. Giscombe, A.K. Lefvert, R. Pirskanen, I. Kockum, M. Landin-Olsson and C.B. Sanjeevi. 1996. Polymorphic amino acid domains of the HLA-DQ molecule are associated with disease heterogeneity in myasthenia gravis. J. Neuroimmunol. 65: 125.

    Article  PubMed  Google Scholar 

  5. Hjelmström P., C. De Weese-Scott, J. E. Penzotti, T. P. Lybrand and C.B. Sanjeevi. 1998. Structural differences between HLA-DQ molecules associated with myasthenia gravis characterized by molecular modeling. J. Neuroimmunol. 85: 102.

    Article  PubMed  Google Scholar 

  6. Raknes G., G.O. Skeie, N.E. Gilhus, S. Aadland and C. Vedeler. 1998. Fcgamma RIIA and Fcgamma RIIB polymorphisms in myasthenia gravis. J. Neuroimmunol. 8: 173.

    Article  Google Scholar 

  7. Huang D., L. Liu, K. Noren, S.O. Xia, J. Trifunovic, R. Pirskanen and A. K. Lefvert. 1998. Genetic association of CTLA-4 to myasthenia. J. Neuroimmunol. 88: 192.

    Article  PubMed  CAS  Google Scholar 

  8. Hjelmström P., C.S. Peacock, R. Giscombe, R. Pirskanen, A.K. Lefvert, J.M. Blackwell and C.B. Sanjeevi. 1998. Polymorphism in tumor necrosis factor genes associated with myasthenia gravis. J. Neuroimmunol. 88: 137.

    Article  PubMed  Google Scholar 

  9. Huang D., R. Pirskanen, P. Hjelmström and A.K. Lefvert. 1998. Polymorphisms in IL-1β and IL receptor antagonist genes are associated with myasthenia gravis. J. Neuroimmunol. 81: 76.

    Article  PubMed  CAS  Google Scholar 

  10. Kaul R., M. Shenoy and P. Christadoss. 1994. The role of major histocompatibility complex genes in myasthenia gravis and experimental autoimmune myasthenia gravis pathogenesis. Adv. Neuroimmunol. 4: 387.

    Article  PubMed  CAS  Google Scholar 

  11. Christadoss P., R. Kaul, M. Shenoy and E. Goluszko. 1995. Establishment of a mouse model of myasthenia gravis which mimics human myasthenia gravis pathogenesis for immune intervention. In Immunobiology of proteins and peptides VIII, M.Z. Atassi and G.S. Bixler Eds., Plenum Press, New York.

    Google Scholar 

  12. Christadoss P., V.A. Lennon and C.S. David. 1979. Genetic control of experimental autoimmune myasthenia gravis in mice. 1. Lymphocyte proliferative response to acetylcholine receptor is under H-2 linked ir gene control. J. Immunol. 123: 2540.

    PubMed  CAS  Google Scholar 

  13. Christadoss P., V.A. Lennon and C.S. David. 1981. Genetic control of experimental autoimmune myasthenia gravis in mice. III. Ia molecules mediate cellular immune responsiveness to acetylcholine receptors. J. Immunol. 138: 1141.

    Google Scholar 

  14. Hohlfeld R., B. Conti-Tronconi, I. Kalies, J. Bertrams and K.V. Toyka. 1985 Genetic restriction of autoreactive acetylcholine receptor-specific T lymphocytes in myasthenia gravis. J. Immunol. 135: 2393.

    PubMed  CAS  Google Scholar 

  15. Brocke S., C. Brautbar, L. Steinman, O. Abramsky, J. Rothbard, D. Neumann, S. Fuchs and E. Mozes. 1988. In vitro proliferative response and antibody titers specific to human acetylcholine receptor in patients with myasthenia gravis and relation to HLA class II genes. J. Clin. Invest. 82: 1894.

    Article  PubMed  CAS  Google Scholar 

  16. Christadoss P., V.A. Lennon, E.H. Lambert and C.S. David. 1979. Genetic control of experimental autoimmune myasthenia gravis in mice. In: T and B lymphocytes: recognition and function. Academic press, New York, p. 249.

    Chapter  Google Scholar 

  17. Berman P.W. and J. Patrick. 1980. Linkage between the frequency of muscular weakness and loci that regulate immune responsiveness in murine experimental autoimmune myasthenia gravis. J. Exp. Med. 152: 507.

    Article  PubMed  CAS  Google Scholar 

  18. Christadoss P., V.A. Lennon, C.J. Krco, E.H. Lambert and C.S. David. 1981. Genetic control of autoimmunity to acetylcholine. Role of la molecules. Ann. NY Acad. Sci. 377: 258.

    Article  PubMed  CAS  Google Scholar 

  19. Shenoy M., M. Oshima, M.Z. Atassi and P. Christadoss. 1993. Suppression of experimental autoimmune myasthenia gravis by epitope-specific neonatal tolerance to synthetic region alpha 146-162 of acetylcholine receptor. Clin. Immunol. Immunopathol. 66: 230.

    Article  PubMed  CAS  Google Scholar 

  20. Wu B., C. Deng, E. Goluszko and P. Christadoss. 1997. Tolerance to a dominant T cell epitope in the acetylcholine receptor molecule induces epitope spread and suppresses murine myasthenia gravis. J. Immunol. 159: 3016.

    PubMed  CAS  Google Scholar 

  21. Yoshikawa H., K. Iwasa, K. Satoh and M. Takamori. 1997. FK506 prevents induction of rat experimental autoimmune myasthenia gravis. J. Autoimmun. 10: 11.

    Article  PubMed  CAS  Google Scholar 

  22. Hoedemackers A., J.L. Bessereau, Y. Graus, T. Guyon, J.-P. Changeux, S. Berrih-Aknin, P. van Breda Vriesman and M. H. De Baets. 1998. Role of the target organ in determining susceptibility to experimental autoimmune myasthenia gravis. J. Neuroimmunol, 89: 131.

    Article  Google Scholar 

  23. Hoedemackers A., J.L. Bessereau, Y. Graus, T. Guyon, J.-P. Changeux, S. Berrih-Aknin, P. van Breda Vriesman and M.H. De Baets. 1998. Differential susceptibility of young and old rats neuromuscular junctions to antibody mediated AChR degradation in experimental autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 841: 550.

    Article  Google Scholar 

  24. Zoda T.E. and K.A. Krolick. 1993. Antigen presentation and T cell specificity repertoire in determining responsiveness to an epitope important in experimental autoimmune myasthenia gravis. J Neuroimmunol. 43: 131.

    Article  PubMed  CAS  Google Scholar 

  25. Jacobson L., A. Vincent, P. Shillito and J. Newsom-Davis. 1993. EAMG induced in rabbits by immunization against peptides representing human AChR. In Myasthenia gravis and related disorders, Ann. N. Y. Acad. Sci. 681: 295.

    Article  CAS  Google Scholar 

  26. Hinman C.L. and R. Stevens-Truss. 1998. In-line affinity chromatography of specific antibody from rabbits with experimental myasthenia gravis as a prelude to immunotherapy. Immunopathol. Immunotoxicol. 20: 233.

    Article  CAS  Google Scholar 

  27. Christadoss P. and M.J. Dauphinee. 1986. Immunotherapy for myasthenia gravis. A murine model. J. Immunol. 136: 2437.

    PubMed  CAS  Google Scholar 

  28. Kaul R., M. Shenoy, E, Goluszko. and P. Christadoss. 1994. Major histocompatibility complex class II gene disruption prevents experimental autoimmune myasthenia gravis. J. Immunol. 152: 3152.

    PubMed  CAS  Google Scholar 

  29. Zhang G.-X., B.-G. Xiao, M. Bakhiet, P. van Der Meide, H. Wigzell, H. Link and T. Olsson. 1996. Both CD4+ and CD8+ T cells are essential to induce experimental autoimmune myasthenia gravis. J. Exp. Med. 184: 349.

    Article  PubMed  CAS  Google Scholar 

  30. König R., S. Fleury and R.N. Germain. 1996. The structural basis of CD4-MHC interactions: coreceptor contributions to T cell recognition and oligomerization-dependant signal transduction. Cur. Topics Microbiol. Immunol. 205: 19.

    Article  Google Scholar 

  31. Christadoss P. 1989. Immunogenetics of experimental autoimmune myasthenia gravis. Crit. Rev. Immunol. 9: 247.

    PubMed  CAS  Google Scholar 

  32. Christadoss P., J.M. Lindstrom, R.W. Melvold and N. Talal. 1985. Mutation at I-A beta chain prevents experimental autoimmune myasthenia gravis. Immunogenetics 21: 33.

    Article  PubMed  CAS  Google Scholar 

  33. Infante A.J., P.A. Thompson, K.A. Krolick and K.A. Wall. 1991. Determinant selection in murine experimental autoimmune myasthenia gravis. Effect of the bml2 mutation on T cell recognition of acetylcholine receptor epitopes. J. Immunol. 146: 2977.

    PubMed  CAS  Google Scholar 

  34. Yang B., K.R. Mcintosh and D.B. Drachman. 1998. How subtle differences in MHC class II affect the severity of experimental autoimmune myasthenia gravis. Clin. Immunol. Immunopathol. 86: 45.

    Article  PubMed  CAS  Google Scholar 

  35. Bellone M., N. Ostlie, S.J. Lei, X.-D. Wu and B. Conti-Tronconi. 1991. The I-Abm12 mutation, which confers resistance to experimental myasthenia gravis, drastically affects the epitope repertoire of murine CD4+ cells sensitized to nicotinic acetylcholine receptor. J. Immunol. 147: 1484.

    PubMed  CAS  Google Scholar 

  36. Karachunski P.I., N. Ostlie, M. Bellone, A.J. Infante and B.M. Conti-Fine. 1995. Mechanisms by which the I-Abm12 mutation influences susceptibility to experimental autoimmune myasthenia gravis: a study in homozygous and heterozygous mice. Scand. J. Immunol. 42: 215.

    Article  PubMed  CAS  Google Scholar 

  37. Oshima M. and M.Z. Atassi. 1995. Effect of amino acid substitutions within the region 62-76 of I-Aβb on binding with and antigen presentation of Torpedo acetylcholine receptor α-chain peptide 146–162. J. Immunol. 154: 5245.

    PubMed  CAS  Google Scholar 

  38. Christadoss P., C.S. David, M. Shenoy and S. Keve. 1990. Ekα transgene in BIO mice suppresses the development of myasthenia gravis. Immunogenetics 31: 241.

    Article  PubMed  CAS  Google Scholar 

  39. Christadoss P., C.S. David and S. Keve. 1992. I-Aαk transgene pairs with I-Aβb gene and protects C57BL10 mice from developing autoimmune myasthenia gravis. Clin. Immunol. Immunopathol. 62: 235.

    Article  PubMed  CAS  Google Scholar 

  40. Krco C.J., CS. David and V.A. Lennon. 1992. Mouse T lymphocyte response to acetylcholine receptor determined by T cell receptor for antigen Vβgene products recognizing MIs-1α. J. Immunol. 147: 3303.

    Google Scholar 

  41. Infante A.J., H. Levcovitz, V. Gordon, K.A. Wall, P.A. Thompson and K.A. Krolick. 1992. Preferential use of a T cell receptor Vβ gene by acetylcholine receptor reactive T cells from myasthenia gravis-susceptible mice. J. Immunol. 148: 3385.

    PubMed  CAS  Google Scholar 

  42. Drachman D.B., K.R. Mc Intosch and B. Yang. 1998. Factors that determine the severity of experimental autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 841: 262.

    Article  PubMed  CAS  Google Scholar 

  43. Wu B., M. Shenoy, E. Goluszko, R. Kaul and P. Christadoss. 1995. TCR gene usage in experimental autoimmune myasthenia gravis pathogenesis. Usage of multiple TCRBV genes in the H-22 strains. J. Immunol. 154: 3603.

    PubMed  CAS  Google Scholar 

  44. Kaul R., B. Wu, E. Goluszko, C. Deng, V. Dedhia, G.H. Nabozny, C. S. David, I.J. Rimm, M. Shenoy, T.M. Haqqi and P. Christadoss. 1997. Experimental autoimmune myasthenia gravis in B10.BV8S2 transgenic mice. Preferential usage of TCRAV1 gene by lymphocytes responding to acetylcholine receptor. J. Immunol. 158: 6006.

    PubMed  CAS  Google Scholar 

  45. Shenoy M., R. Kaul, E. Goluszko, C. David and P. Christadoss. 1994. Effect of MHC class I and CD8 cell deficiency on experimental autoimmune myasthenia gravis pathogenesis. J. Immunol. 153: 5330.

    PubMed  CAS  Google Scholar 

  46. Dedhia V., E. Goluszko, B. Wu, C. Deng and P. Christadoss. 1998. The effect of B cell deficiency on the immune response to acetylcholine receptor and the development of experimental autoimmune myasthenia gravis. Clin. Immunol. Immunopathol. 87: 266.

    Article  PubMed  CAS  Google Scholar 

  47. Christadoss P. 1988. C5 gene influences the development of murine myasthenia gravis. J. Immunol. 140: 2589.

    PubMed  CAS  Google Scholar 

  48. Christadoss P., J.M. Lindstrom, N. Talal, C.R. Duvic, A. Kalantri and M. Shenoy. 1986. Immune response gene control of lymphocyte proliferation induced by acetylcholine receptor-specific helper factor derived from lymphocytes of myasthenic mice. J. Immunol. 137: 1845.

    PubMed  CAS  Google Scholar 

  49. Zhang G.-X., V. Navikas V. and H. Link. 1997. Cytokines and the pathogenesis of myasthenia gravis. Muscle & Nerve 20: 543.

    Article  CAS  Google Scholar 

  50. Shenoy M., S. Baron, B. Wu, E. Goluszko. and P. Christadoss. 1995. IFN-α treatment suppresses the development of experimental autoimmune myasthenia gravis. J. Immunol. 154: 6203.

    PubMed  CAS  Google Scholar 

  51. Deng C, E. Goluszko, S. Baron and Christadoss P. 1996. Interferon α therapy is effective in suppressing the clinical experimental myasthenia gravis. J. Immunol. 157: 5675.

    PubMed  CAS  Google Scholar 

  52. Balasa B., C. Deng, J. Lee, L.M. Bradley, D.K. Dalton, P. Christadoss P. and N. Sarvetnick. 1997. Interferon γ(IFN-γ) is necessary for the genesis of acetylcholine receptor-induced clinical experimental autoimmune myasthenia gravis in mice. J. Exp. Med. 186: 385.

    Article  PubMed  CAS  Google Scholar 

  53. Zhang G.-X., B.-G. Xia, X.-F. Bai, A. Orn, P.H. van Der Meide and H. Link. 1998. IFN-γ is required to induce experimental autoimmune myasthenia gravis. Ann. N. Y. Acad. Sci. 841: 576.

    Article  PubMed  CAS  Google Scholar 

  54. Zhang G.-X., B.-G. Xiao, X.-F. Bai, P.H. van Der Meide, A. Orn and H. Link. 1999. Mice with IFN-γ receptor deficiency are less susceptible to experimental autoimmune myasthenia gravis. J. Immunol. 162: 3775.

    PubMed  CAS  Google Scholar 

  55. Balasa B., C. Deng, J. Lee, P. Christadoss and N. Sarvetnick. 1998. The Th2 cytokine IL-4 is not required for the progression of antibody-dependent autoimmune myasthenia gravis. J. Immunol. 161: 2856.

    PubMed  CAS  Google Scholar 

  56. Moiola L., F. Galbiati F.G. Martino, S. Amadio, E. Brambilla, G. Comi, A. Vincent, L.M. Grimaldi and L. Adorini. 1998. IL-12 is involved in the induction of experimental autoimmune myasthenia gravis, an antibody-mediated disease. Eur. J. Immunol. 28: 2487.

    Article  PubMed  CAS  Google Scholar 

  57. Shi F.-D., B. He, H. Li, D. Matusevicius, H. Link and H.-G. Ljunggren. 1998. Differential requirements for CD28 and CD40 ligand in the induction of experimental autoimmune myasthenia gravis. Eur. J. Immunol. 28: 3587.

    Article  PubMed  CAS  Google Scholar 

  58. Neeno T., C.J. Krco, J. Harders, J. Baisch, S. Cheng S and C.S. David. 1996. HLA-DQ8 transgenic mice lacking endogenous class II molecules respond to house dust allergens. J. Immunol. 156: 3191.

    PubMed  CAS  Google Scholar 

  59. Cheng S., J. Baisch, C. Krco, S. Savarirayan, J. Hanson, K. Hodgson, M. Smart and C. David. 1996. Expression and function of HLA-DQ8 (DQAl*0301/ DQBl*0302) genes in transgenic mice. Eur. J. Immunogenetics 23: 15.

    Article  CAS  Google Scholar 

  60. Raju R., W.-Z. Zhan, P. Karachunski, B. Conti-Fine, G.C. Sieck and C. David. 1998. Polymorphism at the HLA-DQ locus determines susceptibility to experimental autoimmune myasthenia gravis. J. Immunol. 160: 4169.

    PubMed  CAS  Google Scholar 

  61. Godkin A.J., M.P. Davenport, A. Willis, D.P. Jewell and A.V.S. Hill. 1998. Use of complete eluted peptide sequence data from HLA-DR and-DQ molecules to predict T cell epitopes, and the influence of nonbinding terminal regions of ligands in epitopes selection. J. Immunol. 161: 850.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Aurélia Poussin, M., Christadoss, P. (2000). Cellular Mechanisms of Target Antigen Attack in Experimental Autoimmune Myasthenia Gravis. In: Christadoss, P. (eds) Myasthenia Gravis. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4060-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4060-7_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5787-5

  • Online ISBN: 978-94-011-4060-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics