Advertisement

Instantons for Black Hole Pair Production

  • Paul M. Branoff
  • Dieter R. Brill
Part of the Astrophysics and Space Science Library book series (ASSL, volume 244)

Abstract

Various ways are explored to describe black hole pair creation in a universe with a cosmological constant that do not rely on an intermediate state of “nothing”.

Keywords

Black Hole Domain Wall Cosmological Constant Pair Creation Imaginary Time 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    J. B. Hartle and S. W. Hawking, Phys. Rev. D 28, 2960 (1983).MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    R. Gregory and R. Laflamme, Phys. Rev. Lett. 70, 2837 (1993); Nucl. Phys. B428, 399 (1994).MathSciNetADSMATHCrossRefGoogle Scholar
  3. [3]
    C. G. Callan, Jr., and S. Coleman, Phys. Rev. D 16, 1762 (1977).ADSCrossRefGoogle Scholar
  4. [4]
    R. Bousso and A. Chamblin, “Patching up the No-Boundary Proposal with Virtual Euclidean Wormholes” gr-qc/9803047.Google Scholar
  5. [5]
    E. Farhi, A. H. Guth, and J. Guven, Nucl. Phys. B 339, 417 (1990).MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    J. V. Narlikar, J. Astrophys. Astr. 5, 67 (1984); J. V. Narlikar and T. Padmanabhan, Phys. Rev. D 32, 1928 (1985).ADSCrossRefGoogle Scholar
  7. [7]
    S. B. Giddings and A. Strominger, Nucl. Phys. B 306, 890 (1988).MathSciNetADSCrossRefGoogle Scholar
  8. [8]
    D. Garfinkle, S. B. Giddings, and A. Strominger, Phys. Rev. D 49, 958 (1994).MathSciNetADSCrossRefGoogle Scholar
  9. [9]
    J. Cheeger and D. Grommol, Ann. Math. 96, 413 (1972).MATHCrossRefGoogle Scholar
  10. [10]
    H. Nariai, Sci. Rep. Tohoku Univ. Series 1 34, 160 (1950); ibid. 35, 62 (1951).MathSciNetADSGoogle Scholar
  11. [11]
    A. Vilenkin and E. P. S. Shellard, Cosmic Strings and Other Topological Defects, Cambridge University Press, Cambridge (1994).MATHGoogle Scholar
  12. [12]
    R. R. Caldwell, A. Chamblin, and G. W. Gibbons, Phys. Rev. D 53, 7103 (1996).MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    S. J. Kolitch and D. M. Eardley, Phys. Rev. D 56, 4651, (1997).ADSCrossRefGoogle Scholar
  14. [14]
    A. Vilenkin, Phys. Lett. B 133, 177 (1983).MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    J. Ipser and P. Sikivie, Phys. Rev. D 30, 712 (1984).MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    R. C. Myers, Nucl. Phys. B 289, 701 (1987).ADSCrossRefGoogle Scholar
  17. [17]
    S. Deser and N. Redlich, Phys. Lett. 176B, 350 (1986).MathSciNetADSGoogle Scholar
  18. [18]
    Y. Ezawa, M. Kajihara, M. Kiminami, J. Soda, and T. Yano, “On the Canonical Formalism for a Higher-Curvature Gravity” gr-qc/9801084.Google Scholar
  19. [19]
    J. D. Barrow and S. Cotsakis, Phys. Lett. B 214, 515 (1988); K. Maeda, Phys. Rev. D 39, 3159 (1989).MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    S. W. Hawking and J. C. Luttrell, Nucl. Phys. B 247, 250 (1984).MathSciNetADSCrossRefGoogle Scholar
  21. [21]
    H. Fukutata, K. Ghoroku, and K. Tanaka, Phys. Lett. B 222, 191 (1990); O. Bertolami, ibid. 234, 258 (1990).ADSGoogle Scholar
  22. [22]
    K. Lee, Phys. Rev. Lett. 61, 263 (1988) and Phys. Rev. D 48, 2493 (1993).ADSCrossRefGoogle Scholar
  23. [23]
    J. D. Brown, Phys. Rev. D 41, 1125 (1990).MathSciNetADSMATHCrossRefGoogle Scholar
  24. [24]
    S. Cotsakis, P. Leach, and G. Flessas, Phys. Rev. D 49, 6489 (1994).MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    R. Bousso and S. W. Hawking, Phys. Rev. D 54, 6312 (1996).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Paul M. Branoff
    • 1
  • Dieter R. Brill
    • 1
  1. 1.Department of PhysicsUniversity of MarylandCollege ParkUSA

Personalised recommendations