Advertisement

The Universe pp 201-212 | Cite as

The Black Hole Information Paradox: What Have we Learnt from String Theory?

  • Samir D. Mathur
Part of the Astrophysics and Space Science Library book series (ASSL, volume 244)

Abstract

In a complete theory of quantum gravity and matter we must come to grips with the information paradox that is created when black holes form and evaporate. If the paradox is to be resolved within the framework of quantum mechanics as we know it, then we arrive at some very specific requirements from the theory of quantum gravity — the degeneracy of states must reproduce the Bekenstein entropy of black holes, and the interactions must give rise to unitarity preserving Hawking radiation. In the past few years string theory has had remarkably success in reproducings these requirements from black holes. We review some of these developments in this article.

Keywords

Black Hole String Theory Quantum Gravity Entanglement Entropy Supergravity Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Bekenstein J.D., 1973. Phys. Rev. D7, 2333.MathSciNetADSGoogle Scholar
  2. [2]
    Hawking, S. 1975. Comm. Math. Phys. 43, 199.Google Scholar
  3. [3]
    Banks, T., M. Peskin & L. Susskin,, 1984. Nucl. Phys. B244, 135.ADSGoogle Scholar
  4. [4]
    ’t Hooft, G., 1985. Nucl. Phys. B256, 727.ADSCrossRefGoogle Scholar
  5. [5]
    Townsend, P., 1995, Proceedings of March 95 PASCOS/John Hopkins Conference.Google Scholar
  6. [6]
    Polchinski, J., 1995. Phys. Rev. Lett. 75, 4724.MathSciNetADSMATHCrossRefGoogle Scholar
  7. [7]
    Susskind, L¿, 1993. hep—th 9309145.Google Scholar
  8. [8]
    Sen, A., 1995. Nucl. Phys. B440, 421.ADSCrossRefGoogle Scholar
  9. [9]
    Strominger, A. & Vafa, C., 1996. Phys. Lett. B379, 99.MathSciNetADSGoogle Scholar
  10. [10]
    Callan, C. & Maldacena, J. 1996. Nucl. Phys. B472, 591.MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    Das, S.R., Gibbons, G. Mathur, S.D., 1997. Phys. Rev. Lett. 78, 417.ADSCrossRefGoogle Scholar
  12. [12]
    Das, S.R. & Mathur, S.D., 1996. Nucl. Phys. B478, 561.MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    Maldacena, J., 1998. Adv. Theor. Math. Phys. 2, 231.MathSciNetADSMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Samir D. Mathur
    • 1
  1. 1.Massachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations