The Universe pp 191-199 | Cite as

Inhomogeneous Cosmological Models and Symmetry

  • S. D. Maharaj
Part of the Astrophysics and Space Science Library book series (ASSL, volume 244)


Inhomogeneous cosmological models are studied extensively in the literature, in particular when the shear vanishes. The integrability properties of the field equation L xx = F(x)L2 of a spherically symmetric shear-free fluid are reviewed. A first integral, subject to an integrability condition on F(x), is found which generates a class of solutions which contains the solutions of Stephani (1983) and Srivastava (1987) as special cases. The integrability condition on F(x) is reduced to a quadrature. The Lie procedure for this equation is considered and we list various forms of F(x) and their Lie symmetry generators. A con- formal Killing vector in the t-r plane is assumed to exist and for this particular case the solution to the field equation is expressible in terms of Weierstrass elliptic functions.


Field Equation Conformal Symmetry Conformal Killing Einstein Field Equation Order Ordinary Differential Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    Chakravarty N, Dutta Choudhury S B and Banerjee A 1976 Austral J. Phys. 29 113MathSciNetADSCrossRefGoogle Scholar
  2. [2]
    de Oliveira A K G, Santos N O and Kolassis C A 1985 Mon. Not. R. Astr. Soc. 216 1001ADSzbMATHGoogle Scholar
  3. [3]
    Dyer C C, McVittie G C and Oates L M 1987 Gen. Relat. Grav. 19 887ADSzbMATHCrossRefGoogle Scholar
  4. [4]
    Gradshteyn I S and Ryzhik I M 1994 Table of Integrals, Series and Products (New York: Academic Press)zbMATHGoogle Scholar
  5. [5]
    Havas P 1992 Gen Relat. Grav 24 599MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    Herrera L and Ponce de Leon J 1985 J. Math. Phys. 26 778, 2018, 2847MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    Kamke E 1971 Differentialgleichungen Lösungsmethoden Und Lösungen: Band 1, Gewöhnliche Differentialgleichungen, 3. Auflage (New York: Chelsea Publishing)Google Scholar
  8. [8]
    Kramer D, Stephani H, MacCallum M A H and Herlt E 1980 Exact Solutions of Einstein’s Field Equations (Cambridge: Cambridge University Press)zbMATHGoogle Scholar
  9. [9]
    Krasinski A 1997 Inhomogeneous Cosmological Models (Cambridge: Cambridge University Press)zbMATHCrossRefGoogle Scholar
  10. [10]
    Kustaanheimo P and Qvisc B 1948 Soc. Sci. Fennica, Commentationes Physico-Mathematicae XIII 16Google Scholar
  11. [11]
    Leach P G L 1981 J. Math. Phys. 22 465MathSciNetADSzbMATHCrossRefGoogle Scholar
  12. [12]
    Leach P G L and Maharaj S D 1992 J. Math. Phys. 33 465MathSciNetCrossRefGoogle Scholar
  13. [13]
    Leach P G L, Maartens R and Maharaj S D 1992 Int. J. Nonlin. Mech. 27 575MathSciNetzbMATHCrossRefGoogle Scholar
  14. [14]
    Lie S 1912 Vorlesungen über Differentialgleichungen (Leipzig und Berlin: Teubner)zbMATHGoogle Scholar
  15. [15]
    Maartens R and Maharaj M S 1990 J. Math. Phys. 31 Google Scholar
  16. [16]
    Maharaj S D, Leach P G L and Maartens R 1991 Gen. Relat. Grav. 23 261MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. [17]
    Maharaj S D, Leach P G L and Maartens R 1996 Gen. Relat. Grav. 28 35MathSciNetADSzbMATHCrossRefGoogle Scholar
  18. [18]
    McVittie G C 1933 Mon. Not. R. Astr. Soc. 93 325ADSGoogle Scholar
  19. [19]
    McVittie G C 1967 Ann. Inst. Henri Poincaré 6 1Google Scholar
  20. [20]
    McVittie G C 1984 Ann. Inst. Henri Poincaré 40 325MathSciNetGoogle Scholar
  21. [21]
    Santos N O 1985 Mon. Not. R. Astr. Soc. 216 403ADSGoogle Scholar
  22. [22]
    Srivastava D C 1987 Class. Quantum Grav. 4 1093ADSzbMATHCrossRefGoogle Scholar
  23. [23]
    Stephani H 1983 J. Phys. A: Math. Gen. 16 3529MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. [24]
    Stephani H and Wolf T 1996 Class. Quantum Grav. 13 1261MathSciNetADSzbMATHCrossRefGoogle Scholar
  25. [25]
    Sussman R A 1989 Gen. Relat. Grav. 12 1281MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    Wyman M 1976 Can. Math. Bull. 19 343MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • S. D. Maharaj
    • 1
  1. 1.School of Mathematical and Statistical SciencesUniversity of NatalDurbanSouth Africa

Personalised recommendations