Skip to main content

Bacteria and Insects

  • Chapter

Abstract

Bacteria and insects have had the opportunity to evolve together in both mutualistic and parasitic relationships for some 250 million years. This has led to numerous interesting and often fascinating examples of insect/microbe interactions. The most complex relationships are those which involve endosymbiotic bacteria and their insect hosts (O’Neill, 1995). Bacteria such as Buchnera and Wolbachia are strict endosymbionts of numerous insects and have evolved sophisticated dependencies with their hosts.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akhurst, R.J. & Boemare, N.E. (1988). A numerical taxonomic study of the genus Xenorhabdus (Enterobacteriaceae) and proposed elevation of the subspecies of X. nematophilus to species. Journal of General Microbiology 134, 751–761.

    Google Scholar 

  • Akhurst, R.J., Mourant, R.G., Baud, L. & Boemare, N.E. (1996). Phenotypic and DNA relatedness between nematode symbionts and clinical strains of the genus Photorhabdus (Enterobacteriaceae). International Journal of Systematic Bacteriology 46, 1034–1041.

    Article  PubMed  CAS  Google Scholar 

  • Aksoy, S. (1995). Wigglesworthia gen. nov. and Wigglesworthia glossinidia sp. nov., taxa consisting of the mycetocyte-associated, primary endosymbionts of tsetse flies. International Journal of Systematic Bacteriology 45, 848–851.

    Article  PubMed  CAS  Google Scholar 

  • Alexander, B. & Priest, F.G. (1990). Numerical classification and identification of Bacillus sphaericus including some strains pathogenic for mosquito larvae. Journal of General Microbiology 136, 367–376.

    Article  PubMed  CAS  Google Scholar 

  • Aquino de Muro, M. & Priest, F.G. (1993). Phylogenetic analysis of Bacillus sphaericus and development of an oligonucleotide probe specific for mosquito pathogenic strains. FEMS Microbiology Letters 112, 205–210.

    Article  PubMed  CAS  Google Scholar 

  • Aquino de Muro, M., Mitchell, W.J. & Priest, F.G. (1992). Differentiation of mosquito pathogenic strains of Bacillus sphaericus from nontoxic varieties by ribosomal RNA gene restriction patterns. Journal of General Microbiology 138, 1159–1166.

    Article  PubMed  CAS  Google Scholar 

  • Aronson, A.I. (1993). The two faces of Bacillus thuringiensis: insecticidal proteins and post-exponential survival. Molecular Microbiology 7, 489–496.

    Article  PubMed  CAS  Google Scholar 

  • Ash, C., Farrow, J.A., Wallbanks, S. & Collins, M.D. (1991a). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Letters in Applied Microbiology 13, 202–206.

    Article  CAS  Google Scholar 

  • Ash, C., Farrow, J.E., Dorsch, M., Stackebrandt, E. & Collins, M.D. (1991b). Comparative analysis of Bacillus anthracis, Bacillus cereus and related species on the basis of reverse transcriptase sequencing of 16S rRNA. International Journal of Systematic Bacteriology 41, 343–346.

    Article  PubMed  CAS  Google Scholar 

  • Ash, C., Priest, F.G. & Collins, M.D. (1993). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Antonie van Leeuwenhoek 64, 253–260.

    Article  PubMed  CAS  Google Scholar 

  • Baumann, L. & Baumann, P. (1989). Expression in Bacillus subtilis of the 51-kilodalton and 42-kilodalton mosquitocidal toxin genes of Bacillus sphaericus. Applied and Environmental Microbiology 55, 252–253.

    PubMed  CAS  Google Scholar 

  • Baumann, P., Clark, M.A., Baumann, L. & Broadwell, A.H. (1991). Bacillus sphaericus as a mosquito pathogen — properties of the organism and its toxins. Microbiological Reviews 55, 425–436.

    PubMed  CAS  Google Scholar 

  • Baumann, P., Baumann, L., Lai, C.-Y., Rouhbakhsh, D., Moran, N.A. & Clark, M.A. (1995). Genetics, physiology and evolutionary relationships of the genus Buchnera: intracellular symbionts of aphids. Annual Review of Microbiology 49, 55–94.

    Article  PubMed  CAS  Google Scholar 

  • Bleakey, B. & Nealson, K.H. (1988). Characterization of primary and secondary forms of Xenorhabdus luminescens strain HM. FEMS Microbiology Ecology 53, 241–250.

    Google Scholar 

  • Boemare, N.E. & Akhurst, R.J. (1988). Biochemical and physiological characterization of colony variants in Xenorhabdus spp.(Enterobacteriaceae). Journal of General Microbiology 134, 1835–1841.

    PubMed  Google Scholar 

  • Boemare, N.E., Akhurst, R.J. & Mourant, R.G. (1993). DNA relatedness between Xenorhabdus spp. (Enterobacteriaceae), symbiotic bacteria of entomopathogenic nematodes, and a proposal to transfer Xenorhabdus luminescens to a new genus, Photorhabdus gen. nov. International Journal of Systematic Bacteriology 43, 249–255.

    Article  CAS  Google Scholar 

  • Bravo, A. (1997). Phylogenetic relationships of Bacillus thuringiensis delta-endotoxin family proteins and their functional domains. Journal of Bacteriology 179, 2793–2801.

    PubMed  CAS  Google Scholar 

  • Breeuwer, J.A.J., Stouthamer, R., Barns, S.M., Pelletier, D.A., Weisberg, W.G. & Werren, J.H. (1992). Phylogeny of cytoplasmic incompatibility microorganisms in the parasitoid wasp genus Nasonia (Hymenoptera, Pteromalidae) based on 16S ribosomal DNA sequences. Insect Molecular Biology 1, 25–36.

    Article  PubMed  CAS  Google Scholar 

  • Brousseau, R., Saint-Onge, A., Prefontaine, G., Masson, L. & Cabana, J. (1993). Arbitrary primer polymerase chain reaction, a powerful method to identify Bacillus thuringiensis serovars and strains. Applied and Environmental Microbiology 59, 114–119.

    PubMed  CAS  Google Scholar 

  • Brunei, B., Givaudan, A., Lanois, A., Akhurst, R.J. & Boemare, N. (1997). Fast and accurate identification of Xenorhabdus and Photorhabdus species by restriction analysis of PCR-amplified 16S rRNA genes. Applied and Environmental Microbiology 63, 574–580.

    Google Scholar 

  • Bucher, C. (1981). Identification of bacteria found in insects. In Microbial Control of Pests and Plant Diseases 1970–1980, pp. 7–33. Edited by H. D. Burges. London: Academic Press.

    Google Scholar 

  • Buchner, P. (1965). Endosymbiosis of Animals with Plant Microorganisms. New York: Interscience.

    Google Scholar 

  • Bulla, L.A., Costilow, R.N. & Sharpe, E.S. (1978). Biology of Bacillus popilliae. Advances in Applied Microbiology 23, 1–18.

    Article  CAS  Google Scholar 

  • Carlson, C.R., Caugant, D.A. & Kolstø, A.-B. (1994). Genotypic diversity among Bacillus cereus and Bacillus thuringiensis strains. Applied and Environmental Microbiology 60, 1719–1725.

    PubMed  CAS  Google Scholar 

  • Carlson, C.R., Johansen, T. & Kolstø, A.-B. (1996a). The chromosome map of Bacillus thuringiensis subsp. canadensis HD224 is highly similar to that of Bacillus cereus type strain ATCC 14579. FEMS Microbiology Letters 141, 163–167.

    Article  PubMed  CAS  Google Scholar 

  • Carlson, C.R., Johansen, T., Lecadet, M.-M. & Kolstø, A.-B. (1996b). Genomic organization of the entomopathogenic bacterium Bacillus thuringiensis subsp. berliner. Microbiology 142, 1625–1634.

    CAS  Google Scholar 

  • Charles, J.F., Nielsen Leroux, C. & Delécluse, A. (1996). Bacillus sphaericus toxins, molecular biology and mode of action. Annual Review of Entomology 41, 451–472.

    Article  PubMed  CAS  Google Scholar 

  • Correa, M. & Yousten, A.A. (1995). Bacillus sphaericus spore germination and recycling in mosquito larval cadavers. Journal of Invertebrate Pathology 66, 76–81.

    Article  Google Scholar 

  • Damgaard, P.H. (1995). Diarrhoeal enterotoxin production by strains of Bacillus thuringiensis isolated from commercial Bacillus thuringiensis-based insecticides. FEMS Immunology and Medical Microbiology 12, 245–250.

    Article  PubMed  CAS  Google Scholar 

  • Davidson, E.W. (1995). Biochemistry and mode of action of the Bacillus sphaericus toxins. Memorias do Instituto Oswaldo Cruz 90, 81–86.

    Article  PubMed  CAS  Google Scholar 

  • de Barjac, H. & Frachon, E. (1990). Classification of Bacillus thuringiensis strains. Entomophaga 35, 233–240.

    Article  Google Scholar 

  • de Barjac, H., Larget-Thiéry, I., Cosmao Dumanoir, V.C. & Ripouteau, H. (1985). Serological classification of Bacillus sphaericus strains in relation to toxicity to mosquito larvae. Applied Microbiology and Biotechnology 21, 85–90.

    Article  Google Scholar 

  • Delécluse, A., Rosso, M.-L. & Ragni, A. (1995). Cloning and expression of a novel toxin gene from Bacillus thuringiensis subsp. jegathesan encoding a highly mosquitocidal protein. Applied and Environmental Microbiology 61, 4230–4235.

    PubMed  Google Scholar 

  • Dillon, R.J. & Charnley, A.K. (1995). Chemical barriers to gut infection in the desert locus: in vivo production of antimicrobial phenols associated with Pantoea agglomerans. Journal of Invertebrate Pathology 66, 72–75.

    Article  CAS  Google Scholar 

  • Djordjevic, S., Ho-Shon, M. & Hornitzky, M. (1994). DNA restriction endonuclease profiles and typing of geographically diverse isolates of Bacillus larvae. Journal of Apicultural Research 33, 95–103.

    CAS  Google Scholar 

  • Douglas, A.E. & Prosser, W.A. (1992). Synthesis of the essential amino acid tryptophan in the pea aphid (Acrthosiphon pisumi) symbiosis. Journal of Insect Physiology 38, 565–568.

    Article  CAS  Google Scholar 

  • Drancourt, M. & Raoult, D. (1994). Taxonomic position of the rickettsiae: current knowledge. FEMS Microbiology Reviews 13, 13–24.

    Article  PubMed  CAS  Google Scholar 

  • Dutky, S.R. (1940). Two new spore-forming bacteria causing millky diseases of Japanese beetle larvae. Journal of Agricultural Research 61, 57–68.

    Google Scholar 

  • Eisenstein, B.I. (1990). New techniques for microbial epidemiology and the diagnosis of infectious diseases. Journal of Infectious Diseases 161, 595–602.

    Article  PubMed  CAS  Google Scholar 

  • Estruch, J.J., Warren, G.W., Mullins, M.A., Nye, G.J., Craig, J.A. & Koziel, M.G. (1996). Vip3A, a novel Bacillus thuringiensis vegetative toxin with a wide spectrum of activity against lepidopteran insects. Proceedings of the National Academy of Sciences of the United States of America 93, 5389–5394.

    Article  PubMed  CAS  Google Scholar 

  • Falkow, S. (1997). What is a pathogen? ASM News 63, 359–365.

    Google Scholar 

  • Farmer, J.J.I., Jorgensen, J.H., Grimont, P.A., Akhurst, R.J., Poinar, G.O., Ageron, E., Pierce, G.E., Smith, J.A., Carter, G.P.K.L.W. & Hickman-Brenner, F.W. (1989). Xenorhabdus luminescens (DNA hybridization group) from human clinical specimens. Journal of Clinical Microbiology 27, 1594–1602.

    PubMed  Google Scholar 

  • Favret, M.E. & Yousten, A.A. (1985). Insecticidal activity of Bacillus laterosporus. Journal of Invertebrate Pathology 45, 195–203.

    Article  PubMed  CAS  Google Scholar 

  • Forst, S. & Nealson, K. (1996). Molecular biology of the symbiotic pathogenic bacteria Xenorhabdus spp. and Photorhabdus spp. Microbiological Reviews 60, 21–43.

    PubMed  CAS  Google Scholar 

  • Gill, S.S. (1995). Biochemistry and mode of action of Bacillus thuringiensis toxins. Memorias do Instituto Oswaldo Cruz 90, 69–74.

    Article  PubMed  CAS  Google Scholar 

  • Gilliam, M. (1997). Identification and roles of non-pathogenic microflora associated with honey bees. FEMS Microbiology Letters 155, 1–10.

    Article  CAS  Google Scholar 

  • Gilliam, M. & Dunham, D.R. (1977). Recent isolations of Bacillus pulvifaciens from powdery scales of honey bee, Apis mellifera, larvae. Journal of Invertebrate Pathology 32, 222–223.

    Article  Google Scholar 

  • Gilliam, M., Lorenz, B.J. & Richardson, G.V. (1988a). Digestive enzymes and microorganisms in honey bees, Apis mellifera: influence of streptomycin, age, season and pollen. Microbios 55, 95–114.

    CAS  Google Scholar 

  • Gilliam, M., Taber, S., III, Lorenz, B.J. & Prest, D.B. (1988b). Factors affecting the development of chalkbrood disease in colonies of honey bees, Apis mellifera, fed pollen contaminated with Ascosphsera apis. Journal of Invertebrate Pathology 52, 314–3

    Article  Google Scholar 

  • Gordon, R.E., Haynes, W.C. & Pang, C.H.-N. (1973). The genus Bacillus. Agriculture Handbook no. 427. Washington, D.C.: United States Department of Agriculture.

    Google Scholar 

  • Greenberg, B., Kowalski, J.A. & Flowden, M.J. (1970). Factors affecting the transmission of Salmonella by flies: natural resistance to colonization and bacterial interference. Infection and Immunity 2, 800–809.

    PubMed  CAS  Google Scholar 

  • Hacker, J., Blum-Oehler, G., Muhidorfer, I. & Tschape, H. (1997). Pathogenicity islands of virulent bacteria: structure, function and impact on microbial evolution. Molecular Microbiology 23, 1089–1097.

    Article  PubMed  CAS  Google Scholar 

  • Hart, S. (1995). When Wolbachia invades, insect sex lives get into a spin. BioScience 45, 4–6.

    Article  Google Scholar 

  • Heimpel, A.M. & Angus, T.A. (1960). Bacterial insecticides. Bacteriological Reviews 24, 266–288.

    PubMed  CAS  Google Scholar 

  • Henderson, I., Duggleby, C.J. & Turnbull, P.C.B. (1994). Differentiation of Bacillus anthracis from other Bacillus cereus group bacteria with the PC.R. International Journal of Systematic Bacteriology 44, 99–105.

    Article  PubMed  CAS  Google Scholar 

  • Hertig, M. (1936). The rickettsia, Wolbachia pipientis (gen. nov. et sp. nov.) and associated inclusions of the mosquito Culex pipiens. Parasitology 28, 453–486.

    Article  Google Scholar 

  • Heyndrickx, M., Vandemeulebroecke, K., Hoste, B., Janssen, P., Kersters, K., Devos, P., Logan, N.A., Ali, N. & Berkeley, R.C.W. (1996). Reclassification of Paenibacillus (formerly Bacillus) pulvifaciens (Nakamura 1984) Ash et al. 1994, a later subjective synonym of Paenibacillus (formerly Bacillus) larvae (White 1906) Ash et al. 1994, as a subspecies of Paenibacillus larvae, with emended descriptions of Paenibacillus larvae as Paenibacillus larvae subsp. larvae and Paenibacillus larvae subsp. pulvifaciens. International Journal of Systematic Bacteriology 46, 270–279.

    Article  PubMed  CAS  Google Scholar 

  • Humphreys, M.J. & Berry, C. (1998). Variants of the Bacillus sphaericus binary toxins: implications for differential toxicity of strains. Journal of Invertebrate Pathology 71, 184–185.

    Article  PubMed  CAS  Google Scholar 

  • Hurlburt, R.E. (1994). Investigations into the pathogenic mechanisms of the bacterium-nematode complex. ASM News 60, 473–478.

    Google Scholar 

  • Istock, C.A., Duncan, K.E., Ferguson, N. & Zhou, X. (1992). Sexuality in a natural population of bacteria-Bacillus subtilis challenges the the clonal paradigm. Molecular Ecology 1, 95–103.

    Article  PubMed  CAS  Google Scholar 

  • Jahnz, U., Fitch, A. & Priest, F.G. (1996). Evaluation of an rRNA-targeted oligonucleotide probe for the detection of mosquitocidal strains of Bacillus sphaericus in soils — characterization of novel strains lacking toxin genes. FEMS Microbiology Ecology 20, 91–99.

    Article  CAS  Google Scholar 

  • Jarrett, P. & Stephenson, M. (1990). Plasmid transfer between strains of Bacillus thuringiensis infecting Galleria mellonella and Spodoptera littoralis. Applied and Environmental Microbiology 56, 1608–1614.

    PubMed  CAS  Google Scholar 

  • Jelinski, M. (1985). Some biochemical properties of Bacillus larvae White. Apidologie 16, 69–76.

    Article  Google Scholar 

  • Kaji, D.A., Rosato, Y.B., Canhos, V.P. & Priest, F.G. (1994). Characterization by polyacylamide gel electrophoresis of whole cell proteins of some strains of Bacillus thuringiensis subsp. israelensis isolated in Brazil. Systematic and Applied Microbiology 17, 104–107.

    Article  CAS  Google Scholar 

  • Kaneda, T. (1977). Fatty acids of the genus Bacillus: an example of branched-chain preference. Bacteriological Reviews 41, 391–418.

    PubMed  CAS  Google Scholar 

  • Kaya, H.K. & Gaugier, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology 38, 181–206.

    Article  Google Scholar 

  • Klein, M.G. & Kaya, H.K. (1995). Bacillus and Serratia species for scarab control. Memorias de Instito Oswaldo Cruz 90, 87–95.

    Google Scholar 

  • Krych, V., Johnson, J.L. & Yousten, A.A. (1980). Deoxyribonucleic acid homologies among strains of Bacillus sphaericus. International Journal of Systematic Bacteriology 30, 476–484.

    Article  CAS  Google Scholar 

  • Kumar, P.A., Sharma, R.P. & Malik, V.S. (1996). The insecticidal proteins of Bacillus thuringiensis. Advances in Applied Microbiology 42, 1–43.

    Article  PubMed  CAS  Google Scholar 

  • Kuo, W-S. & Chak, K-F. (1996). Identification of novel cry-type genes from Bacillus thuringiensis strains on the basis of restriction fragment length polymorphism of the PCR-amplified DNA. Applied and Environmental Microbiology 62, 1369–1377.

    PubMed  CAS  Google Scholar 

  • Lereclus, D., Delécluse, A & Lecadet, M-M. (1993). Diversity of Bacillus thuringiensis toxins and genes. In Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, pp. 37–69. Edited by P.F. Entwistle, J.S. Cory, M.J. Bailey & S. Higgs. Chichester: John Wiley & Sons.

    Google Scholar 

  • Liu, J.W., Hindley, J., Porter, A. & Priest, F.G. (1993). New high toxicity mosquitocidal strains of Bacillus sphaericus lacking a 100-kilodalton gene. Applied and Environmental Microbiology 59, 3470–3473.

    PubMed  CAS  Google Scholar 

  • Gonzalez, J.M., Jr., Brown, B.J. & Carlton, B.C. (1982). Transfer of Bacillus thuringensis plasmids coding for delta-endotoxins among strains of Bacillus thuringiensis and Bacillus cereus. Proceedings of the National Academy of Sciences of the United States of America 79, 6951–6955.

    Article  PubMed  CAS  Google Scholar 

  • Martin, P.A.W. & Travers, R.S. (1989). Worldwide abundance and distribution of Bacillus thuringiensis. Applied and Environmental Microbiology 55, 2437–2442.

    PubMed  CAS  Google Scholar 

  • Martin, P.A.W., Haransky, E.B., Travers, R.S. & Reichelfderfer, C.F. (1985). Rapid biochemical resting of large numbers of Bacillus thuringiensis isolates using agar dots. BioTechniques 3, 386–392.

    Google Scholar 

  • Maynard Smith, J. (1995). Do bacteria have population genetics? In Population Genetics of Bacteria, pp. 1–12. Edited by S. Baumberg, J.P.W. Young, E.H.M. Wellington & J.R. Saunders. Cambridge: Cambridge University Press.

    Google Scholar 

  • Meadows, M.P. (1993). Bacillus thuringiensis in the environment: ecology and risk assessment. In Bacillus thuringiensis, an Environmental Biopesticide: Theory and Practice, pp. 193–220. Edited by P.F. Entwistle, J.S. Cory, M.J. Bailey & S. Higgs. Chichester: John Wiley & Sons.

    Google Scholar 

  • Milner, R.J. (1981). Identification of the Bacillus popilliae group of insect pathogens. In Microbial Control of Pests and Plant Diseases 1970–1980, pp. 45–59. Edited by H.D. Burges. London: Academic Press.

    Google Scholar 

  • Moran, N.A., Munson, M.A., Baumann, P. & Ishikawa, H. (1993). A molecular clock in endosymbiotic bacteria is calibrated using insect hosts. Proceedings of the Royal Society of London Series B 253, 167–171.

    Article  Google Scholar 

  • Munson, M.A., Baumann, P., Clark, M.A., Baumann, L., Moran, N.A., Voegtlin, D.J. & Campbell, B.C. (1991a). Evidence for the establishment of aphid-eubacterium endosymbiosis is an ancestor of four aphid families. Journal of Bacteriology 173, 6321–6324.

    PubMed  CAS  Google Scholar 

  • Munson, M.A., Baumann, P. & Kinsey, M.G. (1991b). Buchnera gen. nov. and Buchnera aphidicola sp. nov., a taxon consisting of the mycetocyte-associated endosymbionts of aphids. International Journal of Systematic Bacteriology 41, 566–568.

    Article  Google Scholar 

  • Nakamura, L.K. (1994). DNA relatedness among Bacillus thuringiensis serovars. International Journal of Systematic Bacteriology 44, 125–129.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, L.K. & Jackson, M.A. (1995). Clarification of the taxonomy of Bacillus mycoides. International Journal of Systematic Bacteriology 45, 46–49.

    Article  CAS  Google Scholar 

  • Nicolas, L., Regis, L.N. & Rios, E.M. (1994). Role of the exosporium in the stability of the Bacillus sphaericus binary toxin. FEMS Microbiology Letters 124, 271–275.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, P., Rainey, F.A., Outtrup, H., Priest, F.G. & Fritze, D. (1994). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within Bacillus. FEMS Microbiology Letters 117, 61–66.

    Article  CAS  Google Scholar 

  • O’Neill (1995). Wolbachia pipientis: symbiont or parasite. Parasitology Today 11, 168–169.

    Article  CAS  Google Scholar 

  • O’Neill, S., Giordano, R., Colbert, A.M.E., Karr, T.L. & Robertson, H.M. (1992). 16S rRNA phylogenetic analysis of the bacterial endosymbionts associated with cytoplasmic incompatibility in insects. Proceedings of the National Academy of Sciences of the United States of America 89, 2699–2702.

    Article  PubMed  Google Scholar 

  • Petras, S.T. & Casida, L.E. (1985). Survival of Bacillus thuringiensis spores in soil. Applied and Environmental Microbiology 50, 1496–1501.

    PubMed  CAS  Google Scholar 

  • Pettersson, B., Rippere, K.E., Yousten, A.A. & Priest, F.G. (1999). Transfer of Bacillus lentimorbus and Bacillus popilliae to the genus Paenibacillus with emended descriptions of Paenibacillus lentimorbus comb. nov. and Paenibacillus popilliae comb. nov. International Journal of Systematic Bacteriology 49, 531–540.

    Article  PubMed  Google Scholar 

  • Priest, F.G. (1994). Systematics and ecology of Bacillus. In Bacillus subtilis and other Gram-positive Bacteria; Biochemistry, Physiology and Molecular Genetics, pp. 3–16. Edited by J.A. Hoch, A.L. Sonenshein & R. Losick. Washington, D.C.: American Society for Microbiology.

    Google Scholar 

  • Priest, F.G. & Grigorova, R. (1990). Methods for studying the ecology of endospore-forming bacteria. In Methods in Microbiology, pp. 565–591. Edited by R. Grigorova & J.R. Norris. London: Academic Press.

    Google Scholar 

  • Priest, F.G. & Austin, B.A. (1993). Modern Bacterial Systematics, Second Edition. London: Chaman and Hall.

    Google Scholar 

  • Priest, F.G., Goodfellow, M. & Todd, C. (1988). Numerical classification of the genus Bacillus. Journal of General Microbiology 134, 1847–1882.

    PubMed  CAS  Google Scholar 

  • Priest, F.G., Aquino de Muro, M. & Kaji, D.A. (1994a). Systematics of insect pathogenic bacilli: uses in strain identification and isolation of novel strains. In Bacterial Diversity and Systematics, pp. 275–296. Edited by F.G. Priest, A. Ramos-Cormenzana & B.J. Tindall. New York: Plenum Press.

    Chapter  Google Scholar 

  • Priest, F.G., Kaji, D.A., Rosato, Y.B. & Canhos, V.P. (1994b). Characterization of Bacillus thuringiensis and related bacteria by ribosomal RNA gene restriction fragment length polymorphisms. Microbiology 140, 1015–1022.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, F.A., Fritze, D. & Stackebrandt, E. (1994). The phylogenetic diversity of thermophilic members of the genus Bacillus as revealed by 16S rDNA analysis. FEMS Microbiology Letters 115, 205–212.

    Article  PubMed  CAS  Google Scholar 

  • Rainey, F.A., Ehlers, R.U. & Stackebrandt, E. (1995). Inability of the polyphasic approach to systematics to determine the relatedness of the genera Xenorhabdus and Photorhabdus. International Journal of Systematic Bacteriology 45, 379–381.

    Article  PubMed  CAS  Google Scholar 

  • Rigaud, T. & Rousset, F. (1996). What generates the diversity of Wolbachia — arthropod interactions? Biodiversity and Conservation 5, 999–1013.

    Article  Google Scholar 

  • Rippere, K.E., Tran, M.T., Yousten, A.A., Hilu, K.H. & Klein, M.G. (1998). Bacillus popilliae and Bacillus lentimorbus, bacteria causing milky disease in Japanese beetles and related scarab larvae. International Journal of Systematic Bacteriology 48, 395–402.

    Article  Google Scholar 

  • Rosner, B.M., Ensign, J.C. & Schink, B. (1996). Anaerobic metabolism of primary and secondary forms of Photorhabdus luminescens. FEMS Microbiology Letters 140, 227–232.

    Article  CAS  Google Scholar 

  • Rousset, F., Vautrin, D. & Solignac, M. (1992). Molecular identification of Wolbachia, the agent of cytoplasmic incompatibility in Drosophila simulans, and variation in relation to host mitochondrial types. Proceedings of the Royal Society of London Series B 247, 163–168.

    Article  PubMed  CAS  Google Scholar 

  • Russell, B.L., Jelley, S.A. & Yousten, A.A. (1989). Carbohydrate metabolism in the mosquito pathogen Bacillus sphaericus 2362. Applied and Environmental Microbiology 55, 294–297.

    PubMed  CAS  Google Scholar 

  • Schröder, D., Deppisch, H., Obermayer, M., Krohne, G., Stackebrandt, E., Hölldober, B., Goebel, W. & Gross, R. (1996). Intracellular endosymbiotic bacteria of Camponotus species (carpenter ants): systematics, evolution and ultrastructural characterization. Molecular Microbiology 21, 479–489.

    Article  PubMed  Google Scholar 

  • Schwemmler, W. & Gassner, G. (1989). Insect Endosymbiosis: Morphology, Physiology, Genetics, Evolution. Boca Raton, Fl.: C.P.C Press.

    Google Scholar 

  • Seiander, R.K., Cougant, D.A., Ochman, H., Musser, J.M., Gilmour, M.N. & Whittam, T.S. (1986). Methods of multilocus electrophoresis for bacterial population genetics and systematics. Applied and Environmental Microbiology 51, 873–884.

    Google Scholar 

  • Selander, R.K., Li, J., Boyd, E.F., Wang, F.-S. & Nelson, K. (1994). DNA sequence analysis of the genetic structure of populations of Salmonella enterica and Escherichia coli. In Bacterial Diversity and Systematics, pp. 17–50. Edited by F.G. Priest, A. Ramos-Cormenzana & B. Tindall. New York: Plenum Press.

    Chapter  Google Scholar 

  • Shida, O., Takagi, H., Kadowaki, K. & Komagata, K. (1996). Proposal for two new genera, Brevibacillus gen. nov. and Aneuhnibacillus gen. nov. International Journal of Systematic Bacteriology 46, 939–946.

    Article  PubMed  CAS  Google Scholar 

  • Shida, O., Takagi, H., Kadowaki, K., Nakamura, L.K. & Komagata, K. (1997). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus glucanolyticus, Bacillus kobensis and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. International Journal of Systematic Bacteriology 47, 289–298.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S. (1996). The utility of strains of morphological group II Bacillus. Advances in Applied Microbiology 42, 219–261.

    Article  PubMed  CAS  Google Scholar 

  • Smigielski, A.J., Akhurst, R.J. & Boemare, N.E. (1994). Phase variation in Xenorhabdus nematophilus and Photorhabdus luminescens: differences in respiratory activity and membrane energization. Applied and Environmental Microbiology 60, 120–125.

    PubMed  CAS  Google Scholar 

  • Smith, R.A. & Couche, G.A. (1991). The phylloplane as a source of Bacillus thiuringiensis variants. Applied and Environmental Microbiology 57, 311–315.

    PubMed  CAS  Google Scholar 

  • Stackebrandt, E., Ehlers, R.-U. & Rainey, EA. (1997). Xenorhabdus and Photorhabdus: are they sister genera or are their members phylogenetically intertwined. Symbiosis 22, 50–65.

    Google Scholar 

  • Stahly, D.P., Andrews, R. & Yousten, A.A. (1992). The genus Bacillus: insect pathogens. In The Procaryotes, pp. 1697–1745. Edited by A. Balows, H.G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer-Verlag.

    Google Scholar 

  • Sundar, L. & Chang, F.N. (1993). Antimicrobial activity and biosynthesis of indole antibiotics produced by Xenorhabdus nematophilus. Journal of General Microbiology 139, 3139–3148.

    Article  PubMed  CAS  Google Scholar 

  • Szallas, E., Koch, C., Fodor, A., Burghardt, J., Buss, O., Szentirmai, A., Nealson, K.H. & Stackebrandt, E. (1997). Phylogenetic evidence for the taxonomic heterogeneity of Photorhabdus luminescens. International Journal of Systematic Bacteriology 47, 402–407.

    Article  PubMed  CAS  Google Scholar 

  • te Giffel, M.C., Beumer, R.R., Klijn, N., Wagendorp, A. & Rombouts, F.M. (1997). Discrimination between Bacillus cereus and Bacillus thuringiensis using DNA probes based on variable regions of 16S rRNA. FEMS Microbiology Letters 146, 47–51.

    Article  Google Scholar 

  • Thanabalu, T., Berry, C. & Hindley, J. (1993). Cytotoxicity and ADP-ribosylating activity of the mosquitocidal toxin from Bacillus sphaericus SSII-1, possible roles of the 27-kilodalton and 70-kilodalton peptides. Journal of Bacteriology 175, 2314–2320.

    PubMed  CAS  Google Scholar 

  • Thomas, G.M. & Poinar, G.O. (1979). Xenorhabdus gen. nov. a genus of entomopathogenic nematophilic bacteria of the family Enterobacteriaceae. International Journal of Systematic Bacteriology 29, 352–360.

    Article  Google Scholar 

  • Travers, R.S., Martin, P.W.A. & Reichelderfer, C.F. (1987). Selective process for efficient isolation of soil Bacillus species. Applied and Environmental Microbiology 53, 1263–1266.

    PubMed  CAS  Google Scholar 

  • Turnbull, P.C., Hutson, R.A., Ward, M.J., Jones, M.N., Quinn, C.P., Finnie, N.J., Duggleby, C.J., Kramer, J.M. & Melling, J. (1992). Bacillus anthracis but not always anthrax. Journal of Applied Bacteriology 72, 21–28.

    PubMed  CAS  Google Scholar 

  • Walsh, J. (1986). River blindness, a gamble pays off. Science 232, 922–925.

    Article  PubMed  CAS  Google Scholar 

  • Wang, H.Y. & Dowds, B.C.A. (1993). Phase variation in Xenorhabdus luminescens — cloning and sequencing of the lipase gene and analysis of its expression in primary and secondary phases of the bacterium. Journal of Bacteriology 175, 1665–1673.

    PubMed  CAS  Google Scholar 

  • Weiner, B.A. (1978). Isolation and partial characterization of the parasporal body of Bacillus popilliae. Canadian Journal of Microbiology 24, 1557–1561.

    Article  PubMed  CAS  Google Scholar 

  • Werren, J.H., Windsor, D. & Guo, L. (1995a). Distribution of Wolbachia among neotropical arthropods. Proceedings of the Royal Society of London Series B 262, 197–204.

    Google Scholar 

  • Werren, J.H., Zhang, W. & Rong Guo, L. (1995b). Evolution and phylogeny of Wolbachia: reproductive parasites of arthropods. Proceedings of the Royal Society of London Series B 261, 55–71.

    Google Scholar 

  • West, A.W., Burges, H.D., Dixon, T.J. & Wyborn, C.H. (1985). Survival of Bacillus thuringiensis and Bacillus cereus spore inocula in soil: effects of pH, moisture, nutrient availability and indigenous microorganisms. Soil Biology and Biochemistry 17, 657–665.

    Article  Google Scholar 

  • Wintzingerode, F.V., Rainey, F.A., Kroppenstedt, R.M. & Stackebrandt, E. (1997). Identification of environmental strains of Bacillus mycoides by fatty acid analysis and species-specific 16S rDNA oligonucleotide probing. FEMS Microbiology Ecology 24, 201–209.

    Article  Google Scholar 

  • Yen, J.H. & Barr, A.R. (1971). New hypothesis on the cause of cytoplasmic incompatibility in Culex pipiens. Nature 232, 657–658.

    Article  PubMed  CAS  Google Scholar 

  • Yousten, A.A., Fretz, S.B. & Jelley, S.A. (1985). Selective medium for insect pathogenic strains of Bacillus sphaericus. Applied and Environmental Microbiology 49, 1532–1533.

    PubMed  CAS  Google Scholar 

  • Zahner, V., Momen, H., Salles, C.A. & Rabinovitch, L. (1989). A comparative study of enzyme variation in Bacillus cereus and Bacillus thuringiensis. Journal of Applied Bacteriology 67, 275–282.

    Article  PubMed  CAS  Google Scholar 

  • Zahner, V., Momen, H. & Priest, F.G. (1998). Serotype H5a5b is a major clone within mosquito-pathogenic strains of Bacillus sphaericus. Systematic and Applied Microbiology 21, 162–170.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, J., Hodgman, C., Krieger, L., Schnetter, W. & Schairer, H.U. (1997). Cloning and analysis of the first cry gene from Bacillus popilliae. Journal of Bacteriology 179, 4336–4341.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Priest, F.G., Dewar, S.J. (2000). Bacteria and Insects. In: Priest, F.G., Goodfellow, M. (eds) Applied Microbial Systematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4020-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6518-1

  • Online ISBN: 978-94-011-4020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics