Skip to main content

Systematics of Legume Nodule Nitrogen Fixing Bacteria

Agronomic and Ecological Applications

  • Chapter
Applied Microbial Systematics

Abstract

Biological nitrogen fixation (BNF) is easily the most studied microbial process applied to agriculture. It consists of the reduction of atmospheric dinitrogen (N2), unavailable to higher plants, into ammonium (NH4+), an assimilable form of this nutrient. The BNF process is performed solely by microorganisms, the majority inhabiting the soil ecosystem, and is considered to be the most relevant component of the global nitrogen cycle (Ishizuka, 1992). The best known diazotrophs (dinitrogen fixing bacteria) are rhizobia, which are able to establish a symbiotic relationship with plants of the family Leguminosae, hereby called legumes. This symbiosis is characterized by a highly specific association between plant and bacteria. Particular varieties of legume species recognize specific strains of rhizobia, which are able to infect the legume roots. This process triggers the expression of certain plant genes, resulting in the development of nodules around the site of invasion. In the interior of the nodules the bacteria undergo morphological and physiological transformations, becoming nitrogen fixing bacteroides and supplying the plant with nutrient in exchange for carbon-rich material derived from plant photosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen, O.N. & Allen, E.K. (1981). The Leguminosae. A Source Book of Characteristics, Uses and Modulation. Madison, University of Wisconsin Press.

    Google Scholar 

  • Amarger, N., Bours, M., Revoy, F., Allard, M.R. & Laguerre, G. (1994). Rhizobium tropici nodulates field-grown Phaseolus vulgaris in France. Plant and Soil 161, 147–156.

    Article  CAS  Google Scholar 

  • Amarger, N., Macheret, V. & Laguerre, G. (1997). Rhizobium gallicum sp. nov. and Rhizobium giardinii sp. nov., from Phaseolus vulgaris nodules. International Journal of Systematic Bacteriology 47, 996–1006.

    Article  PubMed  CAS  Google Scholar 

  • Anyango, B., Wilson, K.J., Beynon, J.L. & Giller, K.E. (1995). Diversity of rhizobia nodulating Phaseolus vulgaris L. in two Kenyan soils with contrasting pHs. Applied and Environmental Microbiology 61, 4016–4021.

    PubMed  CAS  Google Scholar 

  • Barkay, T., Fouts, D.L. & Olson, B.H. (1985). Preparation of a DNA gene probe for detection of mercury resistance genes in gram-negative bacterial communities. Applied and Environmental Microbiology 49, 686–692.

    PubMed  CAS  Google Scholar 

  • Barry, T., Colleran, G., Glennon, M., Dunican, L.K. & Gannon, F. (1991). The 16S/23S ribosomal spacer region as a target for DNA probes to identify eubacteria. PCR Methods and Applications 1, 51–56.

    Article  PubMed  CAS  Google Scholar 

  • Beijerinck, M.W. (1888). Die Bacterien der Papilionaceeknollchen. Botanische Zeitung 46, 726–735, 741-750, 757-771, 781-790, 797-804.

    Google Scholar 

  • Boddey, R.M., Chalk, P.M., Victoria, R.L. & Matsui, E. (1984). Nitrogen fixation by nodulated soybean under tropical field conditions estimated by the 15N isotope dilution technique. Soil Biology and Biochemistry 16, 583–589.

    Article  CAS  Google Scholar 

  • Bromfield, E.S.P., Wheatcroft, R. & Barran, L.R. (1994). Medium for direct isolation of Rhizobium meliloti from soils. Soil Biology and Biochemistry 26, 423–428.

    Article  Google Scholar 

  • Cadahia, E., Leyva, A., Ruiz-Argueso, T. (1986). Indigenous plasmids and cultural characteristics of rhizobia nodulating chickpeas (Cicer arietinum L.). Archives of Microbiology 146, 239–244.

    Article  CAS  Google Scholar 

  • Chen, W.X., Li, G.S., Qi, Y.L., Wang, E.T., Yuan, H.L. & Li, J.L. (1991). Rhizobium huakuii sp. nov. isolated from the root nodules of Astragalus sinicus. International Journal of Systematic Bacteriology 41, 275–280.

    Article  Google Scholar 

  • Chen, W.X., Tan, Z.Y., Gao, J.L., Li, Y., Wang, E.T. (1997). Rhizobium hainanense sp. nov., isolated from tropical legumes. International Journal of Systematic Bacteriology 47, 870–873.

    Article  PubMed  CAS  Google Scholar 

  • Chen, W., Wang, E., Wang, S., Li, Y., Chen, X. & Li, Y. (1995). Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. International Journal of Systematic Bacteriology 45, 153–159.

    Article  PubMed  CAS  Google Scholar 

  • Coutinho, H.L.C. (1993). Studies of Brady rhizobia from the Brazilian Cerrados. Ph.D. thesis, University of Bristol.

    Google Scholar 

  • Coutinho, H.L.C., Oliveira, V.M., Hollanda, L.M., Moreira, F.M.S. & Franco, A.A. (1995). Diversity of rhizobia isolated from nodules of legume species occurring in the Atlantic and Amazonian rainforests p. 162. In 7th International Symposium of Microbial Ecology, Abstracts, Santos-SP: Brazil.

    Google Scholar 

  • Coutinho, H.L.C., Kay, H.E., Manfio, G.P., Neves, M.C.P., Ribeiro, J.R.A., Rumjanek, N. & Beringen J.E. (1999a). Molecular evidence for shifts in Polysaccharide composition associated with adaptation of soybean Bradyrhizobium strains to the Brazilian cerrado soils. Environmental Microbiology, in press.

    Google Scholar 

  • Coutinho H.L.C., Oliveira, V.M., Manfio, G.P., Rosado, A.S. (1999b). Evaluating the microbial diversity of soils samples: Methodological innovations. Anais da Academia Brasileira de Ciências 71, 3–11.

    Google Scholar 

  • Dangeard, P.A. (1926). Recherches sur les tubercules radicaux des Légumineuses. Botaniste 13, 1–275.

    Google Scholar 

  • de Lajudie, P., Willems, A., Pot, B., Dewettinck, D., Maestrojuan, G., Neyra, M., Collins, M.D., Dreyfus, B., Kersters, K. & Gillis, M. (1994). Polyphasic taxonomy of rhizobia: emendation of the genus Sinorhizobium and description of Sinorhizobium meliloti comb, nov., Sinorhizobium saheli sp. nov., and Sinorhizobium teranga, sp. nov. International Journal of Systematic Bacteriology 44, 715–733.

    Article  Google Scholar 

  • de Lajudie, P., Laurent-Fulele, E, Willems, A, Torck, U., Coopman, R., Collins, M.D., Kersters, K., Dreyfus, B. & Gillis, M. (1998a). Allorhizobium undicola gen. nov., sp. nov., nitrogen-fixing bacteria that efficiently nodulate Neptunia natans in Senegal. International Journal of Systematic Bacteriology 48, 1277–1290.

    Article  PubMed  Google Scholar 

  • de Lajudie, P., Willems, A, Nick, G., Moreira, F., Molouba, F., Hoste, B., Torck, U., eNeyra, M., Collins, M.D., Lindstrom, K., Dreyfus, B. & Gillis, M. (1998b). Characterization of tropical tree rhizobia and description of Mesorhizobium plurifarium sp. nov. International Journal of Systematic Bacteriology 48, 369–382.

    Article  PubMed  Google Scholar 

  • Dobert, R.C., Breil, B.T. & Triplett, E.W. (1994). DNA sequence of the common nodulation genes of Bradyrhizobium elkanii and their phylogenetic relationship to those of other nodulating bacteria. Molecular Plant Microbe Interactions 7, 564–572.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus, B., Garcia, J.L. & Gillis, M. (1988). Characterization of Azorhizobium caulinodans gen. nov., sp. nov., a stem-nodulating nitrogen-fixing bacterium isolated from Sesbania rostrata. International Journal of Systematic Bacteriology 38, 89–98.

    Article  CAS  Google Scholar 

  • Dupuy, N., Willems, A., Pot, B., Dewettinck, D., Vandenbruaene, I., Maestrojuan, G., Dreyfus, B., Kersters, K., Collins, M. D. & Gillis, M. (1994). Phenotypic and genotypic characterization of bradyrhizobia nodulating the leguminous tree Acacia albida. International Journal of Systematic Bacteriology 44, 461–473.

    Article  PubMed  CAS  Google Scholar 

  • Eardly, B.D., Young, J.P.W. & Seiander, R.K. (1992). Phylogenetic position of Rhizobium sp. strain Or 191, a symbiont of both Medicago sativa and Phaseolus vulgaris, based on partial sequences of the 16S rRNA and nif H genes. Applied and Environmental Microbiology 58, 1809–1815.

    PubMed  CAS  Google Scholar 

  • Evguenieva-Hackenberg, E. & Selenska-Pobell, S. (1995). Variability of the 5’-end of the large subunit rDNA and presence of a new short class of RNA in Rhizobiaceae. Letters in Applied Microbiology 21, 402–405.

    Article  PubMed  CAS  Google Scholar 

  • Faria, S.M., Lewis, G.P., Sprent, J.I. & Sutherland, JM (1989). Occurrence of nodulation in the Leguminosae. New Phytologist 111, 607–619.

    Article  Google Scholar 

  • Fischer, S.G. & Lerman, L.S. (1983). DNA fragments differing by single basepair substitutions are separated in denaturing gradient gels: correspondence with melting theory. Proceedings of the National Academy of Sciences of the USA 80, 1579–1583.

    Article  PubMed  CAS  Google Scholar 

  • Frank, B. (1889). Ueber die Pilzsymbiose der Leguminosen. Berichte der Deutschen Botanischen Gesellschaft 7, 332–346.

    Google Scholar 

  • Fred, E.B., Baldwin, I.L. & McCoy, E. (1932). Root nodule bacteria and leguminous plants. Madison: University of Wisconsin Press.

    Google Scholar 

  • Fredrickson, J.K., Bezdicek, D.F., Brickman, F.J. & Li, S.W. (1988). Enumeration of Tn5 mutant bacteria in soil by using a most-probable-number DNA hybridization technique and antibiotic resistance. Applied and Environmental Microbiology 54, 446–453.

    PubMed  CAS  Google Scholar 

  • Gamo, T., Itoh, A., Sawazaki, A., Manguiat, I.J. & Mendoza, D.M. (1991). Rhizobia collected from leguminous plants in the Philippines. Bulletin of the National Institute of Agrobiological Resources 6, 111–129.

    Google Scholar 

  • Graham, P.H. (1976). Identification and classification of root nodule bacteria. In Symbiotic Nitrogen Fixation in Plants. Edited by P.S. Nutman, pp. 99–112. Cambridge, Cambridge University Press.

    Google Scholar 

  • Graham, P.H., Sadowsky, M.J., Keyser, H.H., Barnet, Y.M., Bradley, R.S., Cooper, J.E., De Ley, D.J., Jarvis, B.D.W., Roslycky, E.B., Strijdom, B.W. & Young, J.P.W. (1991). Proposed minimal standards for the description of new genera and species of root-and stem-nodulating bacteria. International Journal of Systematic Bacteriology 41, 582–587.

    Article  Google Scholar 

  • Gross, D.C., Vidaver, A.K. & Klucas, R.U. (1979). Plasmids, biological properties and efficacy of nitrogen fixation in Rhizobium japonicum strains indigenous to alkaline soils. Journal of General Microbiology 114, 257–266.

    Article  CAS  Google Scholar 

  • Gürtler, V. & Stanisich, V.A. (1996). New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. Microbiology 142, 3–16.

    Article  PubMed  Google Scholar 

  • Hahn, M. & Hennecke, H. (1987). Conservation of a symbiotic DNA region in soybean root nodule bacteria. Applied and Environmental Microbiology 53, 2253–2255.

    PubMed  CAS  Google Scholar 

  • Harrison, S.P., Jones, D.G., Schunmann, P.H.D., Forster, J.W. & Young, J.P.W. (1988). Variation in Rhizobium leguminosarum biovar trifolii Sym plasmids and the association with effectiveness of nitrogen fixation. Journal of General Microbiology 134, 2721–2730.

    CAS  Google Scholar 

  • Hartmann, A., Gomez, M., Giraud, J.J. & Revellin, C. (1996). Repeated sequence RSα is diagnostic for Brady rhizobium japonicum and Bradyrhizobium elkanii. Biology and Fertility of Soils 23, 15–19.

    Article  CAS  Google Scholar 

  • Haukka, K. & Lindström, K. (1994). Pulse-field gel electrophoresis for genotypic comparison of Rhizobium bacteria that nodulate leguminous trees. FEMS Microbiology Letters 119, 215–220.

    Article  CAS  Google Scholar 

  • Hellriegel, H. & Wilfarth, H. (1888), Untersuchungen uber die Sttickstoffernahrung der Gramineen und Leguminosen. Beitraege zur Vereinigung Deutschen Zuckerindustrie, pp. 234.

    Google Scholar 

  • Hernandez, B.S. & Focht, D.D. (1984). Invalidity of the concept of slow growth and alkali production in cowpea rhizobia. Applied and Environmental Microbiology 48, 206–210.

    PubMed  CAS  Google Scholar 

  • Hollanda, L.M., Coutinho H.L.C. & Manfio G.P. (1996). Caracterização de rizóbios através de perfis de crescimento em carboidratos. In Anais do XIII Congresso Latino Americano de Ciência do Solo, CD-ROM.

    Google Scholar 

  • Honeycutt, R.J., Sobral, B.W.S. & McClelland, M. (1995). tRNA intergenic spacers reveal polymorphisms diagnostic for Xanthomonas albilineans. Microbiology 141, 3229–3239.

    Article  PubMed  CAS  Google Scholar 

  • Ishizuka, J. (1992). Trends in biological nitrogen fixation research and application. Plant and Soil 141, 197–209.

    Article  CAS  Google Scholar 

  • Jarvis, B.D.W., Pankhurst, C.E. & Patel, J.J. (1982). Rhizobium loti, a new species of legume root nodule bacteria. International Journal of Systematic Bacteriology 32, 378–380.

    Article  Google Scholar 

  • Jarvis, B.D.W., van Berkum, P., Chen, W.X., Nour, S.M., Fernandez, M.P., Cleyet-Marel, J.C. & Gillis, M. (1997). Transfer of Rhizobium loti, Rhizobium huakuii, Rhizobium ciceri, Rhizobium mediterraneum and Rhizobium tianshanense to Mesorhizobium gen. nov. International Journal of Systematic Bacteriology 47, 895–898.

    Article  Google Scholar 

  • Jensen, M.A., Webster, J.A. & Straus, N. (1993). Rapid identification of bacteria on the basis of polymerase chain reaction-amplified ribosomal DNA spacer polymorphisms. Applied and Environmental Microbiology 59, 945–952.

    PubMed  CAS  Google Scholar 

  • Jordan, D.C. (1982). Transfer of Rhizobium japonicum Buchanan 1980 to Bradyrhizobium gen. nov., a genus of slow growing root-nodule bacteria from leguminous plants. International Journal of Systematic Bacteriology 32, 136–139.

    Article  Google Scholar 

  • Jordan, D.C. (1984). Rhizobiaceae. In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 234–256. Edited by N.R. Kreig & J.G. Holt. Baltimore: Williams and Wilkins.

    Google Scholar 

  • Jordan, D.C. & Allen, O.N. (1974). Rhizobiaceae. In Bergey’s Manual of Determinative Bacteriology, 8th edition, pp. 261–264. Edited by R.E. Buchanan & N.E. Gibbons. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Kay, H.E., Coutinho, H.L.C., Fattori, M., Manfio, G.P., Goodacre, R., Nuti, M.P., Basaglia, M. & Beringer, J.E. (1994). The identification of Bradyrhizobium japonicum strains isolated from Italian soils. Microbiology 140, 2333–2339.

    Article  CAS  Google Scholar 

  • Kennedy, L.D. & Greenwood, R.M. (1982). 6-phosphogluconate and glucose-6-phosphate dehydrogenase activities, growth rate and acid production as taxonomic criteria for Rhizobium. New Zealand Journal of Science 25, 361–366.

    CAS  Google Scholar 

  • Kimura, M. (1983). The Neutral Theory of Molecular Evolution. New York, Cambridge University Press.

    Book  Google Scholar 

  • Kramicker, B.J. & Brill, W.J. (1986). Identification of Bradyrhizobium japonicum nodule isolates from Wisconsin soybean farms. Applied and Environmental Microbiology 51, 487–492.

    Google Scholar 

  • Kuykendall, L.D., Saxena, B., Devine, T.E. & Udell, S.E. (1992). Genetic diversity in Bradyrhizobium japonicum Jordan 1982 and a proposal for Bradyrhizobium elkanii sp. nov. Canadian Journal of Microbiology 38, 501–505.

    Article  CAS  Google Scholar 

  • Laguerre, G., Bardin, M. & Amarger, N. (1993a). Isolation from soil of symbiotic and nonsymbiotic Rhizobium leguminosarum by DNA hybridization. Canadian Journal of Microbiology 39, 1142–1149.

    Article  CAS  Google Scholar 

  • Laguerre, G., Geniaux, E., Mazurier, S., Rodriguez-Casartelli, R. & Amarger, N. (1993b). Conformity and diversity among field isolates of Rhizobium leguminosarum bv. viciae, bv. trifolii and bv. phaseoli revealed by DNA hybridization using chromosome and plasmid probes. Canadian Journal of Microbiology 39, 412–419.

    Article  CAS  Google Scholar 

  • Laguerre, G., Mavingui, P., Allard, M.R., Charnay, M.P., Louvrier, P., Mazurier, S.I., Rigottier-Gois, L. & Amarger, N. (1996). Typing of rhizobia by PCR DNA fingerprinting and PCR-restriction fragment length polymorphism analysis of chromosomal and symbiotic gene regions: Application to Rhizobium leguminosarum and its different biovars. Applied and Environmental Microbiology 62, 2029–2036.

    PubMed  CAS  Google Scholar 

  • Lane, D.L., Pace, B., Olsen, G.J., Stahl, D.A., Sogin, M.L. & Pace, N.R. (1985). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proceedings of the National Academy of Sciences, USA 82, 6955–6959.

    Article  CAS  Google Scholar 

  • Liesack, W. & Stackebrandt, E. (1992). Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material from an Australian terrestrial environment. Journal of Bacteriology 174, 5072–5078.

    PubMed  CAS  Google Scholar 

  • Lim, G. & Ng, H.L. (1977). Root nodules of some tropical legumes in Singapore. Plant and Soil 46, 317–327.

    Article  Google Scholar 

  • Lindström, K. (1989). Rhizobium galegae, a new species of legume root nodule bacteria. International Journal of Systematic Bacteriology 39, 365–367.

    Article  Google Scholar 

  • Lindström, K., Paulin, L., Roos, C. & Suominen, L. (1995). Nodulation genes of Rhizobium galegae. In Nitrogen Fixation: Fundamentals and Applications, pp. 365–370. Edited by I.A. Tikhonovich, N.A. Provorov, V.I. Romanov & W.E. Newton. Dordrecht, The Netherlands, Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Lindström, K., van Berkum, P., Gillis, M., Martinez, E., Novikova, N. & Jarvis, B. (1995). Report of the roundtable on Rhizobium taxonomy. In Nitrogen Fixation: Fundamentals and Applications, pp.# 807–881. Edited by I.A. Tikhonovich, N.A. Provorov, V.I. Romanov & W.E. Newton. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Chapter  Google Scholar 

  • Loureiro, M.F., de Faria, S.M., James, E.K., Pott, A. & Franco, A.A. (1994). Nitrogen-fixing stem nodules of the legume Discolobium pulchellum Benth. New Phytologist 128, 283–295.

    Article  CAS  Google Scholar 

  • Loureiro, M.F., James, E.K., Sprent, J.I. & Franco, A.A. (1995). Stem and root nodules on the tropical legume Aeschynomene fluminensis. New Phytologist 130, 531–544.

    Article  Google Scholar 

  • Louvrier, P., Laguerre, G. & Amarger, N. (1995). Semiselective medium for isolation of Rhizobium leguminosarum from soils. Soil Biology and Biochemistry 27, 919–924.

    Article  CAS  Google Scholar 

  • Maidak, B.L., Olsen, G.J., Larsen, N., Overbeek, R., McCaughey, M.J. & Woese, C.R. (1997). The RDP (Ribosomal Database Project). Nucleic Acids Research 25, 109–111.

    Article  PubMed  CAS  Google Scholar 

  • Manjula, M. & Rakesh, T. (1990). Cluster analysis of genes for nitrogen fixation from several diazotrophs. Journal of Genetics 69, 61–78.

    Google Scholar 

  • Martinez-Dretz, G. & Arias, A. (1972). Enzymatic basis for differentiation of Rhizobium into fast and slow-growing groups. Journal of Bacteriology 109, 467–470.

    Google Scholar 

  • Martinez-Romero, E., Segovia, L., Mercante, F.M., Franco, A.A., Graham, P. & Pardo, M.A. (1991). Rhizobium tropici, a novel species nodulating Phaseolus vulgaris L. beans and Leucaena sp. trees. International Journal of Systematic Bacteriology 41, 417–426.

    Article  PubMed  CAS  Google Scholar 

  • Masterson, R.V., Prakash, R.K. & Atherly, A.G. (1985). Conservation of symbiotic nitrogen fixation gene sequences in Rhizobium japonicum and Bradyrhizobium japonicum. Journal of Bacteriology 163, 21–26.

    PubMed  CAS  Google Scholar 

  • McClelland, M., Petersen, C. & Welsh, J. (1992). Length polymorphisms in tRNA intergenic spacers detected by using the polymerase chain reaction can distinguish streptococcal strains and species. Journal of Clinical Microbiology 30, 1499–1504.

    PubMed  CAS  Google Scholar 

  • Minamisawa, K., Seki, T., Onodera, S., Kubota, M. & Asami, T. (1992). Genetic relatedness of Bradyrhizobium japonicum field isolates as revealed by repeated sequences and various other characteristics. Applied and Environmental Microbiology 58, 2832–2839.

    PubMed  CAS  Google Scholar 

  • Moreira, F.M.S. (1991). Caracterização de Estirpes de Rizóbio Isoladas de Espécies Florestais Pertencentes a Diversos Grupos de Divergência de Leguminosae Introduzidas ou Nativas da Amazonia e Mata Atlântica. Tese de Doutorado em Ciências do Solo. Seropédica, Universidade Federal Rural do Rio de Janeiro.

    Google Scholar 

  • Moreira, F.M.S., Silva, M.F. & Faria, S.M. (1992). Occurrence of nodulation in legume species in the Amazon region of Brazil. New Phytologist 121, 563–570.

    Article  Google Scholar 

  • Moreira, F.M.S., Gillis, M., Pot, B., Kersters, K. & Franco, A.A. (1993). Characterization of rhizobia isolated from different divergence groups of tropical Leguminosae by comparative Polyacrylamide gel electrophoresis of their total proteins. Systematic and Applied Microbiology 16, 135–146.

    Article  Google Scholar 

  • Moreira, F.M.S., Martinez-Romero, E., Segovia, L. & Franco, A.A. (1995). Genetic diversity of rhizobia and bradyrhizobia from native tropical species characterized by multilocus enzyme electrophoresis, p. 88. In 7th International Symposium of Microbial Ecology, Abstracts, Santos-SP, Brazil.

    Google Scholar 

  • Moreira, F.M.S., Haukka, K. & Young, J.P.W. (1998). Biodiversity of rhizobia isolated from a wide range of forest legumes in Brazil. Molecular Ecology 7, 889–895.

    Article  PubMed  CAS  Google Scholar 

  • Mullis, K.B. & Faloona, F.A. (1987). Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods of Enzymology 155, 335–351.

    Article  CAS  Google Scholar 

  • Muyzer, G., De Waal, E.C. & Uitterlinden, A.G. (1993). Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology 59, 695–700.

    PubMed  CAS  Google Scholar 

  • Neves, M.C.P. & Rumjanek, N.G. (1997). Diversity and adaptability of soybean and cowpea rhizobia in tropical soils. Soil Biology and Biochemistry 29, 889–895.

    Article  CAS  Google Scholar 

  • Nour, S.M., Fernandez, M.P., Normand, P. & Cleyet-Marel, J.C. (1994a). Rhizobium ciceri sp. nov., consisting of strains that nodulate chickpeas (Cicer arietinum L.). International Journal of Systematic Bacteriology 44, 511–522.

    Article  PubMed  CAS  Google Scholar 

  • Nour, S.M., Cleyet-Marel, J.C., Beck, D., Effosse, A. & Fernandes, M.P. (1994b). Genotypic and phenotypic diversity of Rhizobium isolated from chickpea (Cicer arietinum L.). Canadian Journal of Microbiology 40, 345–354.

    Article  PubMed  CAS  Google Scholar 

  • Nour, S.M., Cleyet-Marel, J.C., Normand, P. & Fernandes, M.P. (1995). Genomic heterogeneity of strains nodulating chickpea (Cicer arietinum L.) and description of Rhizobium mediterraneum sp. nov. International Journal of Systematic Bacteriology 45, 640–648.

    Article  PubMed  CAS  Google Scholar 

  • Novikova, N.I., Pavlova, E.A., Vorobjev, N.I. & Limenshchenko, E.V. (1994). Numerical taxonomy of Rhizobium strains from legumes of the temperate zone. International Journal of Systematic Bacteriology 44, 734–742.

    Article  Google Scholar 

  • Nutman, P.S. (1987). Centenary lecture. Philosophical Transactions of the Royal Society of London 317, 69–106.

    Article  Google Scholar 

  • Oliveira, V.M., Rosato, Y.B., Coutinho, H.L.C. & Manfio, G.P. (1997). Design of a 16S rRNA-directed oligonucleotide probe for Bradyrhizobium tropical strains. In 11th International Congress on Nitrogen Fixation, Proceedings, p.581. Edited by C. Elmerich, A. Kondorosi & W.E. Newton. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Oliveira, V.M., Coutinho, H.L.C., Sobral, B.W.S., Guimarães, C.T., van Elsas, J.D. & Manfio, G.P. (1999). Discrimination of Rhizobium tropici and R. leguminosarum strains by PCR-specific amplification of 16S-23S rDNA spacer region fragments and denaturing gradient gel electrophoresis (DGGE). Letters in Applied Microbiology 28, 137–141.

    Article  PubMed  Google Scholar 

  • Olsen, G.J., Matsuda, H., Hagstrom, R. & Overbeek, R. (1994). fastDNAml: A tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Computer Applications in Biosciences 10, 41–48.

    CAS  Google Scholar 

  • Olsen, P.E., Rice, W.A., Bordeleau, L.M. & Biederbeck, V.O. (1994). Analysis and regulation of legume inoculants in Canada: the need for an increase in standards. Plant and Soil 161, 127–134.

    Article  Google Scholar 

  • Oyaizu, H., Naruhashi, N. & Gamou, T. (1992). Molecular methods of analysing bacterial diversity: the case of rhizobia. Biodiversity and Conservation 1, 237–249.

    Article  Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J. & Olsen, G.J. (1986). The analysis of natural microbial populations by ribosomal RNA sequences. Advances in Microbial Ecology 9, 1–55.

    CAS  Google Scholar 

  • Paffetti, D., Scotti, C., Gnocchi, S., Fancelli, S. & Bazzicalupo, M. (1996). Genetic diversity of an Italian Rhizobium meliloti population from different Medicago sativa varieties. Applied and Environmental Microbiology 62, 2279–2285.

    PubMed  CAS  Google Scholar 

  • Pickup, R.W. (1991). Development of molecular methods for the detection of specific bacteria in the environment. Journal of General Microbiology 137, 1009–1019.

    Article  CAS  Google Scholar 

  • Richardson, A.E., Viccars, L.A., Watson, J.M. & Gibson, A.H. (1995). Differentiation of Rhizobium strains using the Polymerase chain reaction with random and directed primers. Soil Biology and Biochemistry 27, 515–524.

    Article  CAS  Google Scholar 

  • Rinaudo, G., Orenga, S., Fernandez, M.P., Meugnier, H. & Bardin, R. (1991). DNA homologies among members of the genus Azorhizobium and other stem-and root-nodulating bacteria isolated from the tropical legume Sesbania rostrata. International Journal of Systematic Bacteriology 41, 114–120.

    Article  Google Scholar 

  • Rome, S., Brunei, B., Normand, P., Fernandez, M. & Cleyet-Marel, J.C. (1996a). Evidence that two genomic species of Rhizobium are associated with Medicago truncatula. Archives of Microbiology 165, 285–288.

    Article  PubMed  CAS  Google Scholar 

  • Rome, S., Fernandez, M.P., Brunei, B., Normand, P. & Cleyet-Marel, J.C. (1996b). Sinorhizobium medicae sp. nov., isolated from annual Medicago spp. International Journal of Systematic Bacteriology 46, 972–980.

    Article  PubMed  CAS  Google Scholar 

  • Rosado, A.S., Seldin, L., Wolters, A.C. & van Elsas, J.D. (1996). Quantitative 16S rDNA-targeted polymerase chain reaction and oligonucleotide hybridization for the detection of Paenibacillus azotofixans in soil and the wheat rhizosphere. FEMS Microbiology and Ecology 19, 153–164.

    Article  CAS  Google Scholar 

  • Rumjanek, N.G., Dobert, R.C., van Berkum, P. & Triplett, E.W. (1993). Common soybean inoculant strains in Brazil are members of Bradyrhizobium elkanii. Applied and Environmental Microbiology 59, 4371–4373.

    PubMed  CAS  Google Scholar 

  • Scholia, M.H. & Elkan, G.H. (1984). Rhizobium fredii sp. nov., a fast-growing species effectively nodulates soybeans. International Journal of Systematic Bacteriology 34, 484–486.

    Article  Google Scholar 

  • Seal, S.E., Jackson, L.A. & Daniels, M.J. (1992). Use of tRNA consensus primers to indicate subgroups of Pseudomonas solanacearum by polymerase chain reaction amplification. Applied and Environmental Microbiology 58, 3759–3761.

    PubMed  CAS  Google Scholar 

  • Segovia, L., Young, J.P.W. & Martinez-Romero, E. (1993). Reclassification of American Rhizobium leguminosarum biovar phaseoli type I strains as Rhizobium etli sp. nov. International Journal of Systematic Bacteriology 43, 374–377.

    Article  PubMed  CAS  Google Scholar 

  • Selenska-Pobell, S., Evguenieva-Hackenberg, E., Radeva, G. & Squartini, A. (1996). Characterization of Rhizobium ‘hedysari’ by RFLP analysis of PCR amplified rDNA and by genomic PCR fingerprinting. Journal of Applied Bacteriology 80, 517–528.

    Article  PubMed  CAS  Google Scholar 

  • Siqueira, J.O. & Franco, A.A. (1988). Biotecnologia do Solo: Fundamentos e Perspectivas. pp. 236. Lavras, FAEPE/ABEAS/MEC/ESAL.

    Google Scholar 

  • Smalla, K., Cresswell, N., Mendonäa-Hagler, L.C., Wolters, A.C. & van Elsas, J.D. (1993). Rapid DNA extraction protocol from soil for polymerase chain reaction-mediated amplification. Journal of Applied Bacteriology 74, 78–85.

    Article  CAS  Google Scholar 

  • Springer, N., Ludwig, W. & Hardarson, G. (1993). A 23S rRNA targeted specific hybridization probe for Bradyrhizobium japonicum. Systematic and Applied Microbiology 16, 468–470.

    Article  CAS  Google Scholar 

  • Stackebrandt, E., Liesack, W. & Goebel, B.M. (1993). Bacterial diversity in a soil sample from a subtropical Australian environment as determined by 16S rDNA analysis. FASEB Journal 7, 232–236.

    PubMed  CAS  Google Scholar 

  • Stanley, J., Brown, G.G. & Verma, P.S. (1985). Slow-growing Rhizobium japonicum comprises two highly divergent symbiotic types. Journal of Bacteriology 163, 148–154.

    PubMed  CAS  Google Scholar 

  • Stephen, J.R., McCaig, A.E., Smith, Z., Prosser, J.I. & Embley, T.M. (1996). Molecular diversity of soil and marine 16S rRNA gene sequences related to β-subgroup ammonia-oxidizing bacteria. Applied and Environmental Microbiology 62, 4147–4154.

    PubMed  CAS  Google Scholar 

  • Tan, I.K.P. & Broughton, W.J. (1981). Rhizobia in tropical legumes. XIII. Biochemical basis of acid and alkali reactions. Soil Biology and Biochemistry 13, 389–393.

    Article  CAS  Google Scholar 

  • Tas, E., Kaijalainen, S., Saano, A. & Lindström, K. (1994). Isolation of a Rhizobium galegae strain-specific DNA probe. Microbiological Releases 2, 231–237.

    CAS  Google Scholar 

  • Tas, E., Leinonen, P., Saano, A., Räsänen, L.A., Kaijalainen, S., Piippola, S., Hakola, S. & Lindström, K. (1996). Assessment of competitiveness of rhizobia infecting Galega orientalis on the basis of plant yield, nodulation, and strain identification by antibiotic resistance and PC.R. Applied and Environmental Microbiology 62, 529–535.

    PubMed  CAS  Google Scholar 

  • UNEP (United Nations Environment Programme). (1992). Convention on Biological Diversity. Nairobi, UNEP.

    Google Scholar 

  • Vallaeys, T., Topp, E., Muyzer, G., Macheret, V., Laguerre, G., Rigaud, A. & Soulas, G. (1997). Evaluation of denaturing gradient gel electrophoresis in the detection of 16S rDNA sequence variation in rhizobia and methanotrophs. FEMS Microbiology and Ecology 24, 279–285.

    Article  CAS  Google Scholar 

  • van Berkum, P., Beyene, D. & van Berkum, B.D. (1996). Phylogenetic relationships among Rhizobium species nodulating the common bean (Phaseolus vulgaris L.). International Journal of Systematic Bacteriology 46, 240–244.

    Article  PubMed  Google Scholar 

  • van Berkum, P., Beyene, D., Bao, G., Campbell, T.A. & Eardlly, B.D. (1998). Rhizobium mongolense sp. nov. is one of three rhizobial genotypes identified which nodulate and form nitrogen-fixing symbioses with Medicago ruthenica [(L.) Ledebour]. International Journal of Systematic Bacteriology 48, 13–22.

    Article  PubMed  Google Scholar 

  • van Rossum, D., Schuurmans, F.P., Gillis, M., Muotcha, A., van Verseveld, H.W., Stouthamer, A.H. & Boogerd, F.C. (1995). Genetic and phenetic analyses of Bradyrhizobium strains nodulating peanut (Arachis hypogaea L.) roots. Applied and Environmental Microbiology 61, 1599–1609.

    PubMed  Google Scholar 

  • Vincent, J.M. (1970). A Manual for the Practical Study of Root-Nodule Bacteria. Oxford and Edinburgh: Blackwell Scientific Publications.

    Google Scholar 

  • Wang, E.T., van Berkum, P., Beyene, D., Sui, X.H., Dorado, O., Chen, W.X. & Martinez-Romero, E. (1998). Rhizobium huautlense sp. nov., a symbiont of Sesbania herbacea that has a close phylogenetic relationship with Rhizobium galegae. International Journal of Systematic Bacteriology 48, 687–699.

    Article  PubMed  CAS  Google Scholar 

  • Wang, E.T., van Berkum, P., Sui, X.H., Beyene, D., Chen, W.X. & Martinez-Romero, E. (1999). Diversity of rhizobia associated with Amorpha fruticosa isolated from Chinese soils and description of Mesorhizobium amorphae sp. nov. International Journal of Systematic Bacteriology 49, 51–65.

    Article  PubMed  Google Scholar 

  • Woese, C.R. (1987). Bacterial evolution. Microbiological Reviews 51, 221–271.

    PubMed  CAS  Google Scholar 

  • Wong, F.Y.K., Stackebrandt, E., Ladha, J.K., Fleischman, D.E., Date, R.A. & Fuerst, J.A. (1994). Phylogenetic analysis of Bradyrhizobium japonicum and photosynthetic stem-nodulating bacteria from Aeschynomene species grown in separated geographical regions. Applied and Environmental Microbiology 60, 940–946.

    PubMed  CAS  Google Scholar 

  • Xu, L.M., Ge, C., Cui, Z., Li, J. & Fan, H. (1995). Bradyrhizobium liaonigensis sp. nov. isolated from the root nodules of soybeans. International Journal of Systematic Bacteriology 45, 706–711.

    Article  PubMed  CAS  Google Scholar 

  • Yokoyama, T., Ando, S., Murakami, T. & Imai, H. (1996). Genetic variability of the common nod gene in soybean bradyrhizobia isolated in Thailand and Japan. Canadian Journal of Microbiology 42, 1209–1218.

    Article  PubMed  CAS  Google Scholar 

  • Young, J.P.W. (1993). Molecular phylogeny of rhizobia and their relatives. In New Horizons in Nitrogen Fixation p. 587–592. Edited by R. Palacios, J. Mora & W.E. Newton. Proceedings of the 9th International Congress on Nitrogen Fixation, Cancun, Mexico, December 6–12, 1992. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Young, J.P.W. (1996). Phylogeny and taxonomy of rhizobia. Plant and Soil 186, 45–52.

    Article  CAS  Google Scholar 

  • Young, J.P.W. & Johnston, A.W.B. (1989). The evolution of specificity in the Itgume-Rhizobium symbiosis. Trends in Ecology and Evolution 4, 341–349.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, X., Harper, R., Karsisto, M. & Lindström, K. (1991). Diversity of Rhizobium bacteria isolated from the root nodules of leguminous trees. International Journal of Systematic Bacteriology 41, 104–113.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Coutinho, H.L.C., De Oliveira, V.M., Moreira, F.M.S. (2000). Systematics of Legume Nodule Nitrogen Fixing Bacteria. In: Priest, F.G., Goodfellow, M. (eds) Applied Microbial Systematics. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4020-1_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4020-1_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6518-1

  • Online ISBN: 978-94-011-4020-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics