Migmatitic Gabbros From a Shallow-Level Metamorphic Contact Aureole, Fuerteventura Basal Complex, Canary Islands: Role of Deformation in Melt Segregation

  • Alice Hobson
  • François Bussy
  • Jean Hernandez
Part of the Petrology and Structural Geology book series (PESG, volume 11)


Partial melting and deformation-assisted melt segregation, resulting in migmatization, has occurred in a shallow-level gabbroic metamorphic contact aureole, in the roots of a volcanic edifice. Melt segregated into small tension gashes and larger conjugate veins leading to unusual “zebra” and “striped” structures. In areas preserved from deformation, melt did not segregate and froze as small leucocratic pods. Geometry of the network of leucosome veins allows reconstruction of a transtensional stress field at time of melting; which can be related to large-scale regional tectonic activity. Mass transfer processes resulting in the stromatic structures involved small-scale melt segregation, input of allochtonous melts and pervasive circulation of high-temperature fluids. Deformation triggered and enhanced these processes by opening fractures into which the melts could migrate, and by promoting the percolation of fluids in the contact aureole.

Key words

gabbro partial melting migmatite melt segregation microstructures 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ancochea, E., J.L. Brändie, C.R. Cubas, F. Hernán, and M.J. Huertas, Volcanic complexes in the eastern ridge of the Canary Islands: the Miocene activity of the island of Fuerteventura, J. Volcanol Geotherm. Res., 70, 183–204, 1996.CrossRefGoogle Scholar
  2. Ashworth, J.R., Introduction, in: Migmatites, edited by J.R. Ashworth, pp. 1–35, Blackie, Glasgow, 1985.CrossRefGoogle Scholar
  3. Barr, D., Migmatites in the Moines, in: Migmatites, edited by J.R. Ashworth, pp. 225–264, Blackie, Glasgow, 1985.CrossRefGoogle Scholar
  4. Bédard, J.H., Cumulate recycling and crustal evolution in the Bay of Islands ophiolite, J. Geology, 99, 225–249, 1991.CrossRefGoogle Scholar
  5. Bergerat, F., J. Angelier, and T. Villemin, Fault system and stress patterns on emerged oceanic ridges: a case study in Iceland, Tectonophysics, 179, 183–197, 1990.CrossRefGoogle Scholar
  6. Brown, M., Definition of metatexis, diatexis and migmatite, Proc. Geological Association, 84, 371–382, 1973.CrossRefGoogle Scholar
  7. Brown, M., The Petrogenesis of some Migmatites from the Presqu’île de Rhuys, Southern Brittany, France, in Migmatites, Melting and Metamorphism, edited by M.P. Atherton, and C.D. Gribble, pp. 174–200, Shiva Publishing Limited, Cambridge, Mass., 1983.Google Scholar
  8. Brown, M., Y.A. Averkin, E.L. McLellan, and E.W. Sawyer, Melt segregation in migmatites, J. Geophys. Res., 100, 15655–15679, 1995.CrossRefGoogle Scholar
  9. Brown, M. and T. Rushmer, The role of deformation in the movement of granitic melt: views from the laboratory and the field, in: Deformation-enhanced Fluid Transport in the Earth’s Crust and Mantle, edited by M.B. Holness, Chapman & Hall, London, 1997.Google Scholar
  10. Cantagrel, J.M., J.M. Fúster, C. Pin, U. Renaud, and E. Ibarrola, Age Miocène inférieur des carbonatites de Fuerteventura (23 Ma: U-Pb zircon) et le magmatisme précoce d’une île océanique (îles Canaries), Compt. Rendu Acad. Sci. Paris, Série II, 316, 1147–1153, 1993.Google Scholar
  11. Féraud, G., G. Giannerini, R. Campredon, and C.J. Stillman, Geochronology of some Canarian dike swarms; contribution to the volcano-tectonic evolution of the archipelago, J. Volcanol Geotherm. Res., 25, 29–52, 1985.CrossRefGoogle Scholar
  12. Fernandez, C., R. Casillas, A. Ahijado, V. Perello, and A. Hernandez-Pacheco, Shear zones as a result of intraplate tectonics in oceanic crust: the example of the Basal Complex of Fuerteventura (Canary Islands), J. Struct Geol., 19, 41–57, 1997.CrossRefGoogle Scholar
  13. Flagler, P.A., and J.G. Spray, Generation of plagiogranite by amphibolite anatexis in oceanic shear zones, Geology, 19, 70–73, 1991.CrossRefGoogle Scholar
  14. Fúster, J.M., A. Cendrero, P. Gastesi, E. Ibarrola, and R.J. Lopez, Fuerteventura, in: Geologia y volcanologia de las Islas Canarias, edited by M. Istituto Lucas Mallada, pp. 239, 1968.Google Scholar
  15. Gastesi Bascuñana, P., El complejo plutónico básico y ultrabásico de Betaneuria, Fuerteventura (Islas Canarias), Estudios Geologicos, 25, 1–51, 1969.Google Scholar
  16. Geoffroy, L., and J. Angelier, Existence de systèmes de dykes en tension-cisaillement: définition et interprétation mécanique, Compt. Rendu Acad. Scie. Paris, Série II, 321, 505–511, 1995.Google Scholar
  17. Gieré, R., and C.T. Williams, REE-bearing minerals in a Ti-rich vein from the Adamello contact aureole (Italy), Contrib. Mineral Petrol., 112, 83–100, 1992.CrossRefGoogle Scholar
  18. Hobson, A., F. Bussy, and J. Hernandez, Shallow-Level Migmatisation of Gabbros in a Metamorphic Contact Aureole, Fuerteventura Basal Complex, Canary Islands, J. Petrology, 39, 1025–1037, 1998.CrossRefGoogle Scholar
  19. Javoy, M., C.J. Stillman, and F. Pineau, Oxygen and hydrogen isotope studies on the basal complexes of the Canary Islands; implications on the conditions of their genesis, Contrib. Mineral Petrol., 92, 225–235, 1986.CrossRefGoogle Scholar
  20. Le Bas, M.J., D.C. Rex, and C.J. Stillman, The early magmatic chronology of Fuerteventura, Canary Islands, Geological Magazine, 123, 287–298, 1986.CrossRefGoogle Scholar
  21. Mehnert, K.R., Migmatites and the Origin of Granitic Rocks, 393 pp., Elsevier, Amsterdam, 1968.Google Scholar
  22. Mevel, C., Metamorphism in ocean layer 3, Gorringe Bank, Eastern Atlantic, Contrib. Mineral Petrol., 100, 496–509, 1988.CrossRefGoogle Scholar
  23. Roeser, H.A., Magnetic anomalies in the magnetic quiet zones off Morocco, in: Geology of the Northwest African Continental Margin, edited by U. von Rad, K. Hinz, M. Sarnthein, and E. Seibold, pp. 61–68, Springer-Verlag, 1982.CrossRefGoogle Scholar
  24. Roest, W.R., J.J. Danobeitia, J. Verhoef, and B.J. Collette, Magnetic anomalies in the Canary Basin and the Mesozoic evolution of the central North Atlantic, Marine Geophys. Res., 14, 1–24, 1992.CrossRefGoogle Scholar
  25. Sawyer, E.W., Disequilibrium melting and the rate of melt-residuum separation during migmatisation of mafic rocks from the Grenville Front, Quebec, J. Petrology, 32, 701–738, 1991.Google Scholar
  26. Sawyer, E.W., Melt segregation in the continental crust, Geology, 22, 1019–1022, 1994.CrossRefGoogle Scholar
  27. Sawyer, E.W., Melt segregation and magma flow in migmatites: implications for the generation of granite magmas, Trans. Royal Society of Edinburgh: Earth Sciences, 87, 85–94, 1996.CrossRefGoogle Scholar
  28. Sorensen, S.S., Petrology of amphibolite-facies mafic and ultramafic rocks from the Catalina Schist, Southern California; metasomatism and migmatisation in a subduction zone metamorphic setting, J. Metamorphic Geology, 6, 405–435, 1988.CrossRefGoogle Scholar
  29. Stevenson, D.J., Spontaneous small-scale melt segregation in partial melts undergoing deformation, Geophys. Res. Lett., 16, 1067–1070, 1989.CrossRefGoogle Scholar
  30. Stillman, C.J., A Canary Islands Dyke Swarm: Implications for the Formation of Oceanic Islands by Extensional Fissurai Volcanism, in: Mafic dyke swarms, edited by H.C. Halls, and W.F. Fahrig, pp. 243–255, Geological Association of Canada, Toronto, 1987.Google Scholar
  31. Stillman, C.J., J.M. Fuster, M.J. Bennell-Baker, M. Munoz, J.D. Smewing, and J. Sagredo, Basal complex of Fuerteventura (Canary Islands) is an oceanic intrusive complex with rift-system affinities, Nature, 257, 469–470, 1975.CrossRefGoogle Scholar
  32. Tracy, R.J., Migmatite occurrences in New England, in: Migmatites, edited by J.R. Ashworth, pp. 204–224, Blackie, Glasgow, 1985.CrossRefGoogle Scholar
  33. Vigneresse, J.L., M. Cuney, and P. Barbey, Deformation assisted crustal melt segregation and transfer, Geological Association of Canada-Mineralogical Association of Canada, Abstracts, 16, p. A128, 1991.Google Scholar
  34. Williams, M.L., S. Hanmer, C. Kopf, and M. Darrach, Syntectonic generation and segregation of tonalitic melts from amphibolite dikes in the lower crust, Striding-Athabasca mylonite zone, northern Saskatchewan, J.Geophys. Research., 100, 15717–15734, 1995.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Alice Hobson
    • 1
  • François Bussy
    • 1
  • Jean Hernandez
    • 1
  1. 1.Institut de Minéralogie et PétrographieUniversité de Lausanne, BFSH2LausanneSwitzerland

Personalised recommendations