A Fractionation Model for Hydrous Calc-Alkaline Plutons and the Heat Budget During Fractional Crystallisation and Assimilation

  • Luzius Matile
  • Alan Bruce Thompson
  • Peter Ulmer
Part of the Petrology and Structural Geology book series (PESG, volume 11)


A fractionation model has been developed for differentiation of a hydrous mantle magma. As examples of such primitive melts from successive quenched fractionates of high temperature magma batches dyke rocks cross cutting the calc-alkaline batholith of the Adamello pluton have been utilised here. The heat budget during fractionation of these magmas has been evaluated from available thermodynamic data and a generalised phase diagram. Various thermal evolution paths have been calculated in terms of assimilation behaviour of different crustal rocks. The potential for assimilation of fertile crustal rocks by later fractionates, e.g., gabbro (basalt to basaltic — andesite volcanic equivalents) is much smaller (max. 30–40% equivalent mass) compared to picrite (up to 80%).

Key words

hydrous magma thermal models fractional crystallisation assimilation calcalkaline batholith fractionation model hydrous and anhydrous melting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aitcheson, S. J., and A.H. Forrest, Quantification of crustal contamination in open magmatic systems, Journal of Petrology, 35, 461–488, 1995.Google Scholar
  2. Barkhatov, L.S., D.N. Kagan, A.F. Tsytsarkin, E.E. Shpilrain, and K.A. Yakimovich, Investigation of the thermodynamic properties of molten aluminium oxide, Teploviz. Vys. Temp., 11, 1188–1191, 1973.Google Scholar
  3. Bergantz, G.W., Underplating and partial melting: implications for melt generation and extraction, Science, 245, 1093–1095, 1989.CrossRefGoogle Scholar
  4. Bergantz, G.W., and R. Dawes, Aspects of magma generation and ascent in the continental lithosphere, in: Magmatic Systems, edited by M. P. Ryan, pp. 291–317, Academic Press, Inc., 1994.CrossRefGoogle Scholar
  5. Bowen, N.L., The later stages of the evolution of the igneous rocks, J. Geology, Supplement to Number 8, pp.91, 1915.Google Scholar
  6. Burnham, C.W., and H. Nekvasil, Granite pegmatite magmas, Amer. Mineral., 71, 239–264, 1986.Google Scholar
  7. Gardien, V., A.B. Thompson, D. Grujic, and P. Ulmer, Melt fractions during crustal anatexis of biotite + plagioclase + quartz +/- muscovite assemblages, Journal of Geophysical Research, 100, 15581–15591, 1995.CrossRefGoogle Scholar
  8. Ghiorso, M. S., and P.B. Kelemen, Evaluating reaction stoichiometry in magmatic systems evolving under generalized thermodynamic constraints: examples comparing isothermal and isenthalpic assimilation, in: Magmatic Processes: Physicochemical Principles, edited by B. O. Mysen, pp. 319-336, The Geochemical Society of America, Spec. Pub., 1, 1987.Google Scholar
  9. Green, T. H., Anatexis of mafic crust and high pressure crystallisation of andesite, in: Andesites, edited by R. S. Thorpe, pp. 465–487, John Wiley, New York, 1982.Google Scholar
  10. Huppert, H. E., and R.S. Sparks, The generation of granitic magmas by intrusion of basalt into continental crust, Journal of Petrology, 29, 599–624, 1988.Google Scholar
  11. Kerrick, D.M., Contact metamorphism, Reviews in Mineralogy, 26, Mineralogical Society of America, 847 pp., 1992.Google Scholar
  12. Lange, R.L., and I.S.E. Carmichael, Thermodynamic properties of silicate liquids with emphasis on density, thermal expansion and compressibility, Mineralogical Society of America, Reviews in Mineralogy, 24, 25–64, 1990.Google Scholar
  13. Lange, R. L., J J. De Yoreo, and A. Navrotsky, Scanning calorimetric measurement of heat capacity during incongruent melting of diopside, Am. Mineral., 76, 904–912, 1990.Google Scholar
  14. Matile, L., Aufstieg und Platznahme von kalk-alkalinen Magmen — der Adamello-Batholith als Beispiel, Dissertation Nr. 11737, ETH-Zürich., 269 pp., 1996.Google Scholar
  15. Navrotsky, A., D. Ziegler, R. Oestrike, and P. Manier, Calorimetry of silicate melts at 1773 K: measurement of enthalpies of fusion and of mixing in the system diopside-anorthite-albite and anorthite-forsterite, Contrib. Mineral Petrol., 101, 122–130, 1989.CrossRefGoogle Scholar
  16. Naylor, B.F., and O.A. Cook, High-temperature heat contents of the metatitanates of calcium, iron and magnesium, J. Am. Chem. Soc., 68, 1003–1005, 1946.CrossRefGoogle Scholar
  17. Nicholls, J., and M.Z. Stout, Picrite magmas in Kilauea- Evidence from the 1967–1968 Halemaumau and Hiiaka eruptions, Hawaii, J. Petrology, 29, 1031–1057, 1988.Google Scholar
  18. Richet, P., Y. Bottinga, L. Deniélou, J.P. Petitet, and C. Téqui, Thermodynamic properties of quartz, cristobalite and amorphous SiO2: Drop-calorimetry measurements between 1000 and 1800 K and a review from 0 to 2000 K, Geochim. Cosmochim. Acta, 46, 2639–2658, 1982.CrossRefGoogle Scholar
  19. Richet, P., and Y. Bottinga, Heat capacity of silicate liquids: new measurements on NaAlSinO2n+2 and KAlSi3O8, Geochim. Cosmochim. Acta, 48, 453–470, 1984a.CrossRefGoogle Scholar
  20. Richet, P., and Y. Bottinga, Anorthite, andesine, wollastonite, diopside, cordierite and pyrope: thermodynamics of melting, glass transition and properties of amorphous phases, Earth Planet. Sci. Lett., 24, 1–25, 1984b.Google Scholar
  21. Richet, P., and Y. Bottinga, Thermochemical properties of silicate glasses and liquids: a review. Reviews of Geophysics, 24, 1–25, 1986.CrossRefGoogle Scholar
  22. Robie, R.A., B.S. Hemingway, and J.R. Fischer, Thermodynamic properties of minerals and related substances at 298.15 K and 1 Bar (105 Pascals) pressure and at higher temperatures, Geol. Survey Bull., 1452, 456 pp., 1978.Google Scholar
  23. Russell, J.K., B.R. Edwards, and L.D. Snyder, Volatile production possibilities during magmatic assimilation, in: Magmas, fluids and ore-deposits, edited by J.F.H. Thompson, Mineral. Assoc. Canada, Short Course Series 23, pp. 1–24, 1995.Google Scholar
  24. Rutter, M. J., and P.J. Wyllie, Melting of vapor-absent tonalite at 10 kbar to simulate dehydration melting in the deep crust, Nature, 331, 159–160, 1988.CrossRefGoogle Scholar
  25. Shaw, H.R., Viscosities of magmatic silicate liquids: an empirical method of prediction, Amer. Jour. Sci., 272, 870–889, 1972.CrossRefGoogle Scholar
  26. Stebbins, J.F., I.S.E. Carmicael, and L.K. Moret, Heat capacities and entropies of silicate liquids and glasses. Contrib. Mineral. Petrol., 86, 131–148, 1984.CrossRefGoogle Scholar
  27. Thompson, A. B., Fertility of crustal rocks during anatexis, Transactions of Royal Society of Edinburgh, Earth Sciences, 87, 1–10, 1996.CrossRefGoogle Scholar
  28. Ulmer, P., Basische und ultrabasische Gesteine des Adamello (Provinzen Brescia und Trento, Norditalien), Dissertation Nr. 8105, pp. 274, ETH-Zürich, 1986.Google Scholar
  29. Ulmer, P., High pressure phase equilibria of a calc-alkaline picro-basalt: Implications for the genesis of calc-alkaline magmas, Annual Report, Director of the Geophysical Laboratory, Carnegie Institute of Washington, pp. 28–35, 1988.Google Scholar
  30. Vielzeuf, D., and J.R. Holloway, Experimental determination of the fluid-absent melting relations in the pelitic system, Contributions to Mineralogy and Petrology, 98, 257–276, 1988.CrossRefGoogle Scholar
  31. Wright, T. L. and P.C. Doherty, A linear programming and least squares computer method for solving petrologic mixing problems, Geological Society of America Bulletin, 81, 1995–2008, 1977.CrossRefGoogle Scholar
  32. Wyllie, P. J., Crustal anatexis: an experimental review, Tectonophysics, 43, 41–71, 1977.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Luzius Matile
    • 1
  • Alan Bruce Thompson
    • 1
  • Peter Ulmer
    • 1
  1. 1.Departement für ErdwissenschaftenETH ZürichSwitzerland

Personalised recommendations