Skip to main content

Partial Melting and Melt Segregation in a Convecting Mantle

  • Chapter

Part of the book series: Petrology and Structural Geology ((PESG,volume 11))

Abstract

Various causes for mantle melting (decompression, heating or release of water) combined with current estimates of upper mantle temperatures and the state of stress in the lithosphere suggest that in many regions the asthenosphere might be partially molten, but melts may not always be able to rise to the surface. The governing equations describing melting, melt segregation, compaction and depletion in a deforming medium are discussed with emphasis on the physical processes involved. To combine these processes with a convecting upper mantle flow, a “Compaction Boussinesq Approximation” (CBA) is introduced and tested with known solutions. Driving forces include thermal, melt, depletion and enrichment buoyancy. The bulk viscosity and its dependence on porosity has a significant effect on the melt flow even for distances large compared to the compaction length. 1D and 2D solitary porosity waves are discussed with particular emphasis on a variable bulk viscosity, compaction, and dilatation of the matrix. Melting, segregation and solidification processes are studied in a self-consistent model of a variable viscosity plume head arriving at the base of the lithosphere. It is shown that melt buoyancy dominates segregation velocities. However, a variable bulk viscosity may still have some influence on the segregation velocities, while dynamic pressures may be neglected. In the absence of a mantle plume a partially molten undepleted asthenosphere may develop melting instabilities, driven by thermal, melt and depletion buoyancy. This instability propagates laterally with velocities of the order of several cm/a and has a length scale of about 2 times the thickness of the partially molten asthenosphere. Volcanism associated with this propagating instability might have a similar appearance as hot spot tracks suggesting that this instability might be an alternative mechanism to the plume hypothesis at least for some volcanic chains.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee, C. B., and D. Walker, Olivine flotation in mantle melt, Earth Planet. Sci. Lett., 114, 315–324, 1993.

    Article  Google Scholar 

  • Akaogi, M., E. Ito, and A. Navrotsky, Olivine-modified spinel-spinel transitions in the system Mg2SiO4−Fe2SiO4: Calorimetric measurements, thermochemical calculation, and geophysical application, J. Geophys. Res., 94, 15,671–15,685, 1989.

    Article  Google Scholar 

  • Akaogi, M., H. Kojitani, K. Matsuzaka, T. Suzuki, and E. Ito, Postspinel transformations in the system Mg2SiO4−Fe2SiO4: Element partitioning, calorimetry, and thermodynamic calculation., in; Properties of Earth and Planetary Materials at High Pressure and Temperature, Geophys. Monogr. 101, pp. 373–384, AGU, Washington, 1998.

    Chapter  Google Scholar 

  • Bai, Q., and D. L. Kohlstedt, Substantial hydrogen solubility in olivine and implications for water storage in the mantle, Nature, 357, 672–674, 1992.

    Article  Google Scholar 

  • Barcilon, V., and F. M. Richter, Nonlinear waves in compacting media, J. Fluid Mech., 164, 429–448, 1986.

    Article  Google Scholar 

  • Barcilon, V., and O. M. Lovera, Solitary waves in magma dynamics, J. Fluid Mech., 204, 121–133, 1989.

    Article  Google Scholar 

  • Barnouin-Jha, K., E. M. Parmentier, and D. W. Sparks, Buoyant mantle upwelling and crustal production at oceanic spreading centers: On-axis segmentation and off-axis melting, J. Geophys. Res., 102, 11,979–11,989, 1997.

    Article  Google Scholar 

  • Bell, D. R., and G. R. Rossman, Water in the earth’s mantle: the role of nominally anhydrous minerals, Science, 255, 1391–1397, 1992.

    Article  Google Scholar 

  • Bittner, D., and H. Schmeling, Numerical modelling of melting processes and induced diapirism in the lower crust, Geophys. J. Int., 123, 59–70, 1995.

    Article  Google Scholar 

  • Ceuleneer, G., M. Monnereau, M. Rabinowicz, and C. Rosemberg, Thermal and petrological consequences of melt migration within mantle plumes, Phil. Trans. R. Soc. Lond. A, 342, 53–64, 1993.

    Article  Google Scholar 

  • Connolly, J. A. D., and Y. Y. Podladchikov, Compaction-driven fluid flow in viscoelastic rock, Geodinamica Acta (Paris), 11, 55–84, 1998.

    Article  Google Scholar 

  • Cordery, M. J., and J. Phipps Morgan, Convection and melting at mid-ocean ridges, J. Geophys. Res., 98, 19,477–19,503, 1993.

    Article  Google Scholar 

  • Farnetani, D. G., and M. A. Richards, Thermal entrainment and melting in mantle plumes. Earth Planet. Sci. Lett., 136, 251–267, 1995.

    Article  Google Scholar 

  • Faul, U. H., Permeability of partially molten upper mantle rocks from experiments and percolation theory, J. Geophys. Res., 102, 10,299–10,311, 1997.

    Article  Google Scholar 

  • Faul, U. H., D. R. Toomey, and H. S. Waff, Intergranular basaltic melt is distributed in thin, elongated inclusions, Geophys. Res. Lett., 21, 29–32, 1994.

    Article  Google Scholar 

  • Herzberg, C. T., Magma density at high pressure Part 2: A test of the olivine flotation hypothesis, in: Magmatic Processes: Physicochemical Processes, edited by B. O. Mysen, pp. 47–58, Geochemical Society, Special Publication No. 1, 1987.

    Google Scholar 

  • Herzberg, C, and J. Zhang, Melting experiments on anhydrous peridotite KLB-1: Compositions of magmas in the upper mantle and transition zone, J. Geophys. Res., 101, 8271–8295, 1996.

    Article  Google Scholar 

  • Hirschmann, M. M., M. S. Ghiorso, L. E. Wasylenki, P. D. Asimov, and E. M. Stolper, Calculation of peridotite partial melting from thermodynamic models of minerals and melts. I. Review of methods and comparison with experiments, J. Petrol., 39, 1091–1115, 1998.

    Article  Google Scholar 

  • Hirth, G., and D. L. Kohlstedt, Water in the oceanic upper mantle: implications for rheology, melt extraction and the evolution of the lithosphere, Earth Planet. Set Lett., 144, 93–108, 1996.

    Article  Google Scholar 

  • Inoue, T., and H. Sawamoto, High pressure melting of pyrolite under hydrous condition and its geophysical implications, in: High-pressure research: Application to Earth and Planetary Sciences, edited by Y. Syono and M. H. Manghnani, pp. 323–331, Terra Scientific Publ. Comp., Tokyo/AGU, Washington D.C., 1992.

    Chapter  Google Scholar 

  • Irifune, T., and A. E. Ringwood, Phase transformations in subducted oceanic crust and buoyancy relationships at depths of 600–800 km in the mantle, Earth Planet. Sci. Lett., 117, 101–110, 1993.

    Article  Google Scholar 

  • Ito, G., J. Lin, and C.W. Gable, Dynamics of mantle flow and melting at a ridge-centered hotspot: Iceland and the Mid-Atlantic ridge. Earth Planet. Sci. Lett., 144, 53–74, 1996.

    Article  Google Scholar 

  • Iwamori, H., D. McKenzie, and E. Takahashi, Melt generation by isentropic mantle upwelling, Earth Planet. Sci. Lett., 134, 253–266, 1995.

    Article  Google Scholar 

  • Jha, K., E. M. Parmentier, and J. Phipps Morgan, The role of mantle-depletion and melt-retention buoyancy in spreading-center segmentation, Earth Planet. Sci. Lett., 125, 221–234, 1994.

    Article  Google Scholar 

  • Jordan, T. H., Mineralogies, densities and seismic velocities of garnet lherzolites and their geophysical implications, in: The Mantle Sample: Inclusions in Kimberlites and other Volcanics, edited by F.R. Boyd and O. A. Meyer, pp. 1–14, AGU, Washington, 1979.

    Chapter  Google Scholar 

  • Katsura, T., and E. Ito, The system Mg2SiO4−Fe2SiO4 at high pressures and temperatures: Precise determinations of stabilities of olivine, modified spinel, and spinel, J. Geophys. Res., 94, 15,663–15,670, 1989.

    Article  Google Scholar 

  • Khodakovskii, G., M. Rabinowicz, G. Ceuleneer, and V. P. Trubitsyn, Melt percolation in a partially molten mantle mush: effect of a variable viscosity, Earth Planet. Sci. Lett., 134, 267–281, 1995.

    Article  Google Scholar 

  • Kohlstedt, D. L., H. Keppler, and D. C. Rubie, Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4, Contrib. Mineral. Petrol., 123, 345–357, 1996.

    Article  Google Scholar 

  • Langmuir, C. H., E. M. Klein, and T. Plank, Petrological systematics of mid-ocean ridge basalts: Constraints on melt generation beneath ocean ridges, in: Mantle Flow and Melt Generation at Mid-Ocean Ridges, edited by J. Phipps Morgan, D. K. Blackman and J. M. Sinton, pp. 183–280, Geophysical Monograph 71, American Geophysical Union, 1992.

    Chapter  Google Scholar 

  • Manglik, A., and U. R. Christensen, Effect of mantle depletion buoyancy on plume flow and melting beneath a stationary plate, J. Geophys. Res., 102, 5019–5028, 1997.

    Article  Google Scholar 

  • McKenzie, D., The generation and compaction of partially molten rock, J. Petr., 25, 713–765, 1984.

    Google Scholar 

  • McKenzie, D., The extraction of magma from the crust and mantle, Earth Planet. Sci. Lett., 74, 81–91, 1985.

    Article  Google Scholar 

  • McKenzie, D. P., The compaction of igneous and sedimentary rocks, J. Geol. Soc, London, 144, 299–307, 1987.

    Article  Google Scholar 

  • McKenzie, D., and M. J. Bickle, The volume and composition of melt generated by extension of the lithosphere, J. Petr., 29, 625–679, 1988.

    Google Scholar 

  • Mibe, K, T. Fujii, and A. Yasuda, Connectivity of aqueous fluid in the earth’s upper mantle, Geophys. Res. Lett., 25, 1233–1236, 1998.

    Article  Google Scholar 

  • O’Connell, R. J., and B. Budiansky, Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res., 82, 5719–5735, 1977.

    Article  Google Scholar 

  • Ohtani, E., A. Suzuki, and T. Kato,: Flotation of olivine and diamond in mantle melt at high pressure: Implications for fractionation in the deep mantle and ultradeep origin of diamond, in: Properties of Earth and Planetary Materials at high pressure and temperature. Geophys. Monograph 101, edited by M. Manghnani and T. Yagi, pp. 227–239, American Geophysical Union, Washington, 1998.

    Chapter  Google Scholar 

  • Olson, P., Mechanics of flood basalt magmatism, in: Magmatic Systems, edited by M. P. Ryan, pp. 1–18, Academic Press, 1994.

    Chapter  Google Scholar 

  • Parmentier, E. M. and J. Phipps Morgan, Spreading rate dependence of three-dimensional structure in oceanic spreading centres, Nature, 348, 325–328, 1990.

    Article  Google Scholar 

  • Phipps Morgan, J., Melt migration beneath mid-ocean spreading centers, Geophys. Res. Lett., 14, 1238–1241, 1987.

    Article  Google Scholar 

  • Ribe, N. M., The deformation and compaction of partial molten zones, Geophys. J. R. astr. Soc., 83, 487–501, 1985a.

    Article  Google Scholar 

  • Ribe, N. M., The generation and composition of partial melts in the earth’s mantle, Earth Planet. Sci. Lett., 73, 361–376, 1985b.

    Article  Google Scholar 

  • Ribe, N. M., Theory of melt segregation—A review, J. Volcan. Geotherm. Res., 33, 241–253, 1987.

    Article  Google Scholar 

  • Ribe, N. M., and M. D. Smooke, A stagnation point flow model for melt extraction from a mantle plume, J. Geophys. Res., 92, 6437–6443, 1987.

    Article  Google Scholar 

  • Ribe, N. M., U. R. Christensen, and J. Theißing, The dynamics of plume—ridge interaction, 1: Ridge-centered plumes, Earth Planet. Sci. Lett., 134, 155–168, 1995.

    Article  Google Scholar 

  • Richardson, C. N., Melt flow in a variable viscosity matrix, Geophys. Res. Lett., 25, 1099–1102, 1998.

    Article  Google Scholar 

  • Richter, F. M. and D. McKenzie, Dynamical models for melt segregation from a deformable matrix, J. Geology, 92,129–140, 1984.

    Article  Google Scholar 

  • Schilling, J.-G., Fluxes and excess temperatures of mantle plumes inferred from their interaction with migrating mid-ocean ridges, Nature, 352, 397–403, 1991.

    Article  Google Scholar 

  • Schmeling, H., Numerical models on the influence of partial melt on elastic, anelastic, and electric properties of rocks. Part I: elasticity and anelasticity, Phys. Earth Planet. Int., 41, 34–57, 1985.

    Article  Google Scholar 

  • Schmeling, H., 1989 Compressible convection with constant and variable viscosity: the effect on slab formation, geoid, and topography, J. Geophys. Res., 94, 12,463–12,481, 1989.

    Article  Google Scholar 

  • Schmeling, H., and G. Y. Bussod, Variable viscosity convection and partial melting in the continental asthenosphere, J. Geophys. Res., 101, 5411–5423, 1996.

    Article  Google Scholar 

  • Schmeling, H. and G. Marquart, The influence of second-scale convection on the thickness of the continental lithosphere and crust, Tectonophysics, 189, 281–306, 1991.

    Article  Google Scholar 

  • Scott, D. R., and D. J. Stevenson, Magma solitons, Geophys. Res. Lett., 11, 1161–1164, 1984.

    Article  Google Scholar 

  • Scott, D. R. and D. J. Stevenson, Magma ascent by porous flow, J. Geophys. Res., 91, 9283–9296, 1986.

    Article  Google Scholar 

  • Shen, Y. and D. W. Forsyth, Geochemical constraints on the initial and final depths of melting beneath mid-ocean ridges, J. Geophys. Res., 100, 2211–2237, 1995.

    Article  Google Scholar 

  • Sleep, N. H., Tapping of melt by veins and dikes, J. Geophys. Res., 93, 10,255–10,272, 1988.

    Google Scholar 

  • Smith, D.G. (ed), The Cambridge Encyclopedia of Earth Sciences, 496 pp., Cambridge University Press, Cambridge, 1981.

    Google Scholar 

  • Sparks, D. W., and E. M. Parmentier, Melt extraction from the mantle beneath spreading centers, Earth Planet. Sci. Lett., 105, 368–377, 1991.

    Article  Google Scholar 

  • Spiegelman, M., Flow in deformable porous media. Part I. Simple analysis, J. Fluid Mech., 247, 17–38, 1993a.

    Article  Google Scholar 

  • Spiegelman, M., Flow in deformable porous media. Part II. Numerical analysis — the relationship between shock waves and solitary waves, J. Fluid Mech., 247, 39–63, 1993b.

    Article  Google Scholar 

  • Stolper, E., D. Walker, B.H. Hager, and J.F. Hays, Melt segregation from partially molten source regions: the importance of melt density and source region size, J. Geophys. Res., 86, 6261–6271, 1981.

    Article  Google Scholar 

  • Tackley, P.J., and D. J. Stevenson, A mechanism for spontaneous self-perpetuating volcanism on the terrestrial planets, in: Flow and Creep in the Solar System: Observations, Modeling and Theory, edited by D. B. Stone and S. K. Runcorn, pp. 307–321, Kluwer, Dordrecht, 1993.

    Google Scholar 

  • Takahashi, E., Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 9367–9382, 1986.

    Article  Google Scholar 

  • Thompson, A. B., Water in the earth’s upper mantle, Nature, 358, 295–302, 1992.

    Article  Google Scholar 

  • Turcotte, D.L., and J. Phipps Morgan, The Physics of magma migration and mantle flow beneath a mid-ocean ridge. Geophys. Monograph 71, pp. 155–182, American Geophysical Union, Washington D.C., 1992.

    Book  Google Scholar 

  • van Keken, P., Evolution of starting mantle plumes: a comparison between numerical and laboratory models, Earth Planet. Sci. Lett., 148, 1–11, 1997.

    Article  Google Scholar 

  • White, R. S., D. McKenzie, and R. K. O’Nions, Oceanic crustal thickness from seismic measurements and rare earth element inversions, J. Geophys. Res., 97, 19,683–19,715, 1992.

    Google Scholar 

  • White, R.S. and D. McKenzie, Mantle plumes and flood basalts, J. Geophys. Res., 100, 17,543–17,585, 1995.

    Google Scholar 

  • Wiggins, C. and M. Spiegelman, Magma migration and magmatic solitary waves in 3-D, Geophys. Res. Lett., 22, 1289–1292, 1995.

    Article  Google Scholar 

  • Zoback, M. L., First- and second-order patterns of stress in the lithosphere: The World Stress Map project, J. Geophys. Res., 97, 11,703–11,728, 1992.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Schmeling, H. (2000). Partial Melting and Melt Segregation in a Convecting Mantle. In: Bagdassarov, N., Laporte, D., Thompson, A.B. (eds) Physics and Chemistry of Partially Molten Rocks. Petrology and Structural Geology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4016-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4016-4_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5774-5

  • Online ISBN: 978-94-011-4016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics