Skip to main content

The Grain-Scale Distribution of Silicate, Carbonate and Metallosulfide Partial Melts: a Review of Theory and Experiments

  • Chapter

Part of the book series: Petrology and Structural Geology ((PESG,volume 11))

Abstract

In a partially molten rock containing a low melt fraction, the permeability and consequently the dynamics of melt segregation are strongly sensitive to the distribution of the melt at the grain scale. Melt distribution is controlled by a variety of factors such as the minimization of interfacial energies, the stress regime and different aspects of the melting reaction (melting rate, volume change on melting, spatial distribution of the reactants). Due to the long duration of large-scale melting events, an equilibrium melt configuration corresponding to a minimum total interfacial energy per unit volume should commonly be approached. In this chapter, we review the theoretical and experimental studies devoted to the equilibrium distribution of melt in a partially molten rock.

At low melt fraction, the ratio of grain-boundary energy to solid-melt interfacial energy, γ SS/γ SL, is the fundamental physical property that determines the equilibrium melt geometry, including the dihedral angle θ at the junction of melt with two grains and the interconnection threshold ϕ c (ϕ c is the melt fraction at which melt interconnection is established). The trends of increasing θ and ϕ c with decreasing γ SS/γ SL are well demonstrated in the idealized case of a monomineralic system with isotropic interfacial energies and that is subjected to hydrostatic stress. Recent experimental and theoretical studies indicate that these general trends must hold in natural systems: (1) low values of γ SS/γ SL (for instance ≈1) give rise to large average dihedral angles, a high proportion of dry grain edges and a non-interconnected melt geometry (at low melt fraction); (2) larger values of γ SS/γ SL result in low average dihedral angles, a large proportion of wetted grain edges and interconnection at a very low melt fraction; and (3) for large ratios γ SS/γ SL (> 2), generalized wetting of grain boundaries is expected.

The possibility of predicting the type of melt distribution as well as the interconnection threshold and the permeability from dihedral angle measurements has motivated numerous experimental studies of the grain-scale distribution of geological fluids. The data for silicate, carbonate and metallosulfide melts are reviewed and the implications for the movement of low melt fractions are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agee, C. B., Li J., M.C. Shannon, and S. Circone, P-T phase diagram for the Allende meteorite, J. Geophys. Res., 100, 17725–17740, 1995.

    Article  Google Scholar 

  • Ballhaus, C., and D.J. Ellis, Mobility of core melts during Earth’s accretion, Earth Planet Sci. Lett., 143, 137–145, 1996.

    Article  Google Scholar 

  • Bourbié, T., and B. Zinszner, Hydraulic and acoustic properties as a function of porosity in Fontainebleau sandstone, J. Geophys. Res., 90, 11524–1532, 1985.

    Article  Google Scholar 

  • Brace, W. F., and J.B. Walsh, Some direct measurements of the surface energy of quartz and orthoclase, Amer. Mineral., 47, 1111–1122, 1962.

    Google Scholar 

  • Brenan, J. M., Diffusion of chlorine in fluid-bearing quartzite: effects of fluid composition and total porosity, Contrib. Mineral. Petrol., 115, 215–224, 1993.

    Article  Google Scholar 

  • Brown, M., Y.A. Averkin, and E.L. McLellan, Melt segregation in migmatites, J. Geophys. Res., 100, 15655–15679, 1995.

    Article  Google Scholar 

  • Bruhat, G., Thermodynamique, 428 pp., 4e édition. Masson & Cie, Paris, 1947.

    Google Scholar 

  • Bulau, J. R., H.S. Waff, and J.A. Tyburczy, Mechanical and thermodynamical constraints on fluid distribution in partial melts, J. Geophys. Res., 84, 6102–6108, 1979.

    Article  Google Scholar 

  • Busch, W., G. Schneider, and K.R. Mehnert, Initial melting at grain boundaries. Part II: melting in rocks of granodioritic, quartz-dioritic and tonalitic composition, N. Jahr. Mineral. Monatsh., 8, 345–370, 1974.

    Google Scholar 

  • Bussod, G.Y., and J.M. Christie, Textural development annd melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions, J. Petrol. Special Lherzolite Issue, 17–39, 1991.

    Google Scholar 

  • Clemm, P.J., and J.C. Fisher, The influence of grain boundaries on the nucleation of secondary phases, Acta Metall., 3, 70–73, 1955.

    Article  Google Scholar 

  • Cmíral, M., J.D. Fitz Gerald, U.H. Faul, and D.H. Green, A close look at dihedral angles and melt geometry in olivine-basalt aggregates: a TEM study, Contrib. Mineral. Petrol, 130, 336–345, 1998.

    Article  Google Scholar 

  • Conrad, E. H., Surface roughening, melting and faceting, Progress in Surface Science, 39, 65–116, 1992.

    Article  Google Scholar 

  • Cooper, R. F., and D.L. Kohlstedt, Interfacial energies in the olivine-basalt system, in: High pressure research in geophysics, Adv. Earth Planet. Sci. 12., edited by S. Akimoto and M.H. Manghnani, pp. 217–228, Centre for Academic Publication, Tokyo, 1982

    Chapter  Google Scholar 

  • Cooper, R.F., and Kohlstedt D.L., Solution-precipitation enhanced diffusional creep of partially molten olivine-basalt aggregates during hot-pressing, Tectonophysics, 107, 207–233, 1984.

    Article  Google Scholar 

  • Cooper, R.F., and D.L. Kohlstedt, Rheology and structure of olivine-basalt partial melts, J. Geophys. Res., 91, 9315–9323, 1986.

    Article  Google Scholar 

  • Daines M. J., and D.L. Kohlstedt, Influence of deformation on melt topology in peridotites, J. Geophys. Res., 102, 10257–10271, 1997.

    Article  Google Scholar 

  • Daines, M. J., and F.M. Richter, An experimental method for directly determining the interconnectivity of melt in a partially molten system, Geophys. Res. Lett., 15, 1459–1462, 1988.

    Article  Google Scholar 

  • Dell’Angelo, L. N., and J. Tullis, Experimental deformation of partially melted granitic aggregates, J. Metam. Geol., 6, 495–515, 1988.

    Article  Google Scholar 

  • Defay, R. and I. Prigogine, Tension superficielle et adsorption, 295 pp., Editions Desser, Liège (Belgium), 1951.

    Google Scholar 

  • Faul, U. H., Permeability of partially molten upper mantle rocks from experiments and percolation theory, J. Geophys. Res., 102, 10299–10311, 1997.

    Article  Google Scholar 

  • Faul, U. H., Constraints on the melt distribution in anisotropic polycrystalline aggregates undergoing grain growth. This volume, 1999.

    Google Scholar 

  • Frank, C. F., Two-component flow model for convection in the Earth’s upper mantle, Nature, 220, 350–352, 1968.

    Article  Google Scholar 

  • Fujii, N., K. Osamura, and E. Takahashi, Effect of water saturation on the distribution of partial melt in the olivine-pyroxene-plagioclase system, J. Geophys. Res., 91, 9253–9259, 1986.

    Article  Google Scholar 

  • Gaetani, G. A., and T.L. Grove, The effect of variable f O2 / f S2 conditions on wetting angles in olivine/sulfide melt aggregates: mobility of sulfide melts in the Earth’s upper mantle, Lunar Planet Sci. Conf., 27, 389–390, 1996.

    Google Scholar 

  • Gibbs, J. W., Collected works, Longmans Green & Co., (1928), 2 vol., p. 219, 1877.

    Google Scholar 

  • Harker, D. and E.R. Parker, Grain shape and grain growth, Trans ASM, 34, 156–195, 1945.

    Google Scholar 

  • Harris, C, and J.D. Bell,. Natural partial melting of syenite blocks from Ascension Island, Contrib. Mineral Petrol., 79, 107–113, 1982.

    Article  Google Scholar 

  • Harte, B., R.H. Hunter, and P.D. Kinny,. Melt geometry, movement and crystallization, in relation to mantle dykes, veins and metasomatism, Phil. Trans. R. Soc. Lond. A, 342, 1–21, 1993.

    Article  Google Scholar 

  • Herpfer, M. A., Solid-state diffusion and melt microstructures in metal-silicate systems, PhD thesis, Arizona State University, 1992.

    Google Scholar 

  • Herpfer, M. A., and J.W. Larimer, Core formation: an experimental study of metallic melt-silicate segregation, Meteoritics, 28, 362, 1993.

    Google Scholar 

  • Herring, C, Some theorems on the free energies of crystal surfaces, Phys. Rev., 82, 87–93, 1951a.

    Article  Google Scholar 

  • Herring, C, Surface tension as a motivation for sintering, in: Physics of powder metallurgy, edited by W.E. Kingston, pp. 143–179, McGraw-Hill, New York, 1951b.

    Google Scholar 

  • Hirth, G., and Kohlstedt D. L., 1995. Experimental constraints on the dynamics of the partially molten mantle: deformation in the diffusion creep regime, J. Geophys. Res., 100, 1981–2001.

    Article  Google Scholar 

  • Hoffman, D.W., and J.W. Cahn, A vector thermodynamics for anisotropic surfaces. I: fundamentals and application to plane surface junctions, Surf. Sci., 31, 368–388, 1972.

    Article  Google Scholar 

  • Holness, M. B., Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of adsorbed H2O on the permeability of quartzites, Earth Planet. Sci. Lett., 117, 363–377, 1993.

    Article  Google Scholar 

  • Holness, M. B., The effect of feldspar on quartz-H2O−CO2 dihedral angles at 4 kbar, with consequences for the behaviour of aqueous fluids in migmatites, Contrib. Mineral. Petrol., 118, 356–364, 1995.

    Article  Google Scholar 

  • Holness, M. B., Surface chemical controls on pore fluid connectivity in texturally equilibrated materials, in: Fluid flow and transport in rocks: Mechanisms and effects, edited by B.D. Jamtveit B. D. and B.W.D. Yardley, pp. 149–170, Chapman & Hall, London, 1996.

    Google Scholar 

  • Holness M. B., The permeability of non-deforming rock, in: Deformation-enhanced fluid transport in the Earth’s crust and mantle, edited by M.B. Holness, pp. 9–39, Chapman & Hall, London, 1997.

    Google Scholar 

  • Hunter, R. H., and D. McKenzie, The equilibrium geometry of carbonate melts in rocks of mantle composition, Earth Planet. Sci. Lett., 92, 347–356, 1989.

    Article  Google Scholar 

  • Iida, T., and R.L. Guthrie, The physical properties of liquid metals, Oxford Science Pub., Clarendon Press, Oxford, 1988.

    Google Scholar 

  • Jarosewich, E., Chemical analyses of meteorites: A compilation of stony and iron meteorite analyses, Meteoritics, 25, 323–337, 1990.

    Google Scholar 

  • Jin, Z.-M., H.W. II Green, and Y. Zhou, Melt topology in partially molten mantle peridotite during ductile deformation, Nature, 372, 164–167, 1994.

    Article  Google Scholar 

  • Jung, H., and H.S. Waff, Olivine crystallographic control and anisotropic melt distribution in ultramafic partial melts, Geophys. Res. Lett., 25, 2901–2904, 1998.

    Article  Google Scholar 

  • Jurewicz, S. R., and A.J.G. Jurewicz, Distribution of apparent angles on random sections with emphasis on dihedral angle measurements, J. Geophys. Res., 91, 9277–9282, 1986.

    Article  Google Scholar 

  • Jurewicz, S. R., and J.H. Jones, Preliminary results of sulfide melt/silicate wetting experiments in a partially melted ordinary chondrite, Lunar Planet. Sci., XXV, 653–654, 1995a.

    Google Scholar 

  • Jurewicz, S. R., and J.H. Jones, Preliminary results of olivine-metal wetting experiments and the direct measurement of metal phase interConnectivity, Lunar Planet. Sci., XXVI, 709–710, 1995b.

    Google Scholar 

  • Jurewicz, S. R., and E.B. Watson, Distribution of partial melt in a felsic system: the importance of surface energy, Contrib. Mineral. Petrol., 85, 25–29, 1984.

    Article  Google Scholar 

  • Jurewicz, S. R., and E.B. Watson, The distribution of partial melt in a granitic system: the application of liquid phase sintering theory, Geochim. Cosmochim. Acta, 49, 1109–1121, 1985.

    Article  Google Scholar 

  • Keene, B. J., Surface tension of slag systems, in: Slag Atlas, edited by Verein Deutscher EisenHüttenleute, pp. 403–462, 2nd edition, 1995a.

    Google Scholar 

  • Keene, B. J., Interfacial tension between ferrous melts and molten slags, in: Slag Atlas, edited by Verein Deutscher EisenHüttenleute, pp. 463–511, 2nd edition, 1995b.

    Google Scholar 

  • Kern, R., The equilibrium form of a crystal, in: Morphology of crystals, edited by I. Sunagawa, pp. 77–206, Terra Scientific Publishing Co., Tokyo, 1987.

    Google Scholar 

  • Kohlstedt, D. L., Structure, rheology and permeability of partially molten rocks at low melt fractions, in: Mantle flow and melt generation at mid-ocean ridges, Geophys. Monograph 71, edited by J. Phipps Morgan, D.K. Blackman, and J.M. Sinton, pp.103–121, AGU, Washington, 1992.

    Chapter  Google Scholar 

  • Laplace, P. S., Mécanique céleste, suppl. 10e livre, 1806.

    Google Scholar 

  • Laporte, D., Wetting behaviour of partial melts during crustal anatexis: the distribution of hydrous silicic melts in polycrystalline aggregates of quartz, Contrib. Mineral Petrol, 116, 486–499, 1994.

    Article  Google Scholar 

  • Laporte, D., and E.B. Watson, Direct observation of near-equilibrium pore geometry in synthetic quartzites at 600°–800°C and 2–10.5 Kbar, J. Geology, 99, 873–878, 1991.

    Article  Google Scholar 

  • Laporte, D., and A. Provost, The equilibrium crystal shape of silicates: implications for the grain-scale distribution of partial melts, EOS Trans. Am. Geophys. Union, 75, 364, 1994.

    Google Scholar 

  • Laporte, D., and A. Provost, The equilibrium geometry of a fluid phase in a two-dimensional polycrystalline aggregate with anisotropic surface energies, J. Geophys. Res. (subm.)

    Google Scholar 

  • Laporte, D., and D. Vielzeuf, Wetting behaviour of partial melts during crustal anatexis: the distribution of hydrous silicic melts in polycrystalline aggregates of quartz, EOS Trans. Am. Geophys. Union, 75, 364, 1994.

    Google Scholar 

  • Laporte, D., and E.B. Watson, Experimental and theoretical constraints on melt distribution in crustal sources: the effect of crystalline anisotropy on melt interconnectivity, Chem. Geol, 124, 161–184, 1995.

    Article  Google Scholar 

  • Laporte, D., C. Rapaille, and A. Provost, Wetting angles, equilibrium melt geometry, and the permeability threshold of partially molten crustal protoliths, in: Granite: from segregation of melt to emplacement fabrics, edited by J.-L. Bouchez, D.H. Hutton and W.E. Stephens, pp. 31–54, Kluwer, Amsterdam, 1997.

    Google Scholar 

  • Longhi, J., and S.R. Jurewicz, Plagioclase-melt wetting angles and textures: implications for anorthosites, Lunar Planet. Sci., XXVI, 859–860, 1995.

    Google Scholar 

  • Lupulescu, A., and E.B. Watson, Granitic melt connectivity at low-melt fraction in a mafic crustal protolith, EOS Trans. Am. Geophys. Union, 75, 585–586, 1994.

    Google Scholar 

  • Lupulescu, A., and E.B. Watson, Tonalitic melt connectivity at low-melt fraction in a mafic crustal protolith at 10 kb and 800 °C, EOS Trans. Am. Geophys. Union, 76, 299–300, 1995.

    Article  Google Scholar 

  • Maaløe, S., Principles of igneous petrology, 374 pp., Springer-Verlag, Berlin, 1985.

    Book  Google Scholar 

  • Maury, R. C, and H. Bizouard, Melting of acid xenoliths into a basanite: an approach to the possible mechanisms of crustal contamination, Contrib. Mineral. Petro.l, 48, 275–286, 1974.

    Article  Google Scholar 

  • McKenzie, D., The generation and compaction of partially molten rock, J. Petrol., 25, 713–765, 1984.

    Google Scholar 

  • McKenzie, D., The extraction of magma from the crust and mantle, Earth Planet. Sci. Lett., 74, 81–91, 1985.

    Article  Google Scholar 

  • McKenzie, D., Some remarks on the movement of small melt fractions in the mantle, Earth Planet. Sci. Lett., 95, 53–72, 1989.

    Article  Google Scholar 

  • Mehnert, K. R., W. Busch, and G. Schneider, Initial melting at grain boundaries of quartz and feldspar in gneisses and granulites, N. Jahr. Mineral. Monatsh., 4, 165–183, 1973.

    Google Scholar 

  • Minarik, W. G., and E.B. Watson, Interconnectivity of carbonate melt at low melt fraction, Earth Planet. Sci. Lett., 133, 423–437, 1995.

    Article  Google Scholar 

  • Minarik, W. G., F.J. Ryerson, and E.B. Watson,. Textural entrapment of core-forming melts, Science, 272, 530–533, 1996.

    Article  Google Scholar 

  • Murr, L. E., Interfacial phenomena in metals and alloys, Addison-Wesley, London, 1975.

    Google Scholar 

  • Parks, G. A., Surface and interfacial free energies of quartz, J. Geophys. Res., 89, 3997–4008, 1984.

    Article  Google Scholar 

  • Provost, P., and J.-P. Provost, Thermodynamique physique et chimique, 314 pp., CEDIC/Fernand Nathan, Paris, 1984.

    Google Scholar 

  • Raia, F., and F.J. Spera, Simulations of crustal anatexis: implications for the growth and differentiation of continental crust, J. Geophys. Res., 102, 22629–22648, 1997.

    Article  Google Scholar 

  • Riegger, O. K., and L.H. van Vlack, Dihedral angle measurement, AIME Trans., 218, 933–935, 1960.

    Google Scholar 

  • Rignault, E., Modélisation de la géométrie d’équilibre d’une phase fluide dans un agrégat polycristallin. Implications pour le transport des fluides géologiques, PhD thesis, Blaise Pascal University, Clermont-Ferrand, France, 1998.

    Google Scholar 

  • Riley, G. N., Jr., and D.L. Kohlstedt, Kinetics of melt migration in upper mantle-type rocks, Earth Planet. Sci. Lett., 105, 500–521, 1991.

    Article  Google Scholar 

  • Rubie, D.C., and A.J. Brearley, A model for rates of disequilibrium melting during metamorphism, in: High Temperature Metamorphism and Crustal Anatexis, edited by J.R. Ashworth and M. Brown, London, Unwin Hyman, 1991.

    Google Scholar 

  • Rutter, E. H., The influence of deformation on the extraction of crustal melts: a considerationof the role of melt-assisted granular flow, in: Deformation-enhanced fluid transport in the Earth’s crust and mantle, edited by M.B. Holness, pp. 82–110, Chapman & Hall, London, 1997

    Google Scholar 

  • Scott, D.R., and D.J. Stevenson, Magma ascent by porous flow, J. Geophys. Res., 91, 9283–9296, 1986.

    Article  Google Scholar 

  • Shannon, M. C. and C.B. Agee, High pressure constraints on percolative core formation, Geophys. Res. Lett., 23, 2717–2720, 1996.

    Article  Google Scholar 

  • Smith, C. S., Some elementary principles of polycrystalline microstructure, Metall. Rev., 9, 1–48, 1964.

    Article  Google Scholar 

  • Stevenson, D. L., 1990. Fluid dynamics of core formation, in: Origin of the Earth, edited by H.E. Newsom and J.H. Jones, pp. 231–249, Oxford Univ. Press, Oxford, 1990.

    Google Scholar 

  • Stickeis, C. A., and E.E. Hucke, Measurement of dihedral angles, Trans. Am. Inst. Min. Metall. Pet. Eng., 230, 795–801, 1964.

    Google Scholar 

  • Sutton, A. P., and R.W. Balluffi, Interfaces in crystalline materials, Monographs in the Physics and Chemistry of Materials, no. 51, 852 pp., Clarendon Press, Oxford, 1995.

    Google Scholar 

  • Swain, M. V., and B.K. Atkinson, Fracture surface energy of olivine, Pageoph., 116, 866–872, 1978.

    Article  Google Scholar 

  • Takahashi, E., Melting of a Yamato L3 chondrite (Y-74191) up to 30 kbar, in: Proceedings of the 8 th Symposium on Antarctic Meteorites (Mem. Nat. Inst. Polar Res. Spec. Issue Jpn), vol. 30, pp. 168–180, 1983.

    Google Scholar 

  • Takahashi, E., Melting of a dry peridotite KLB-1 up to 14 GPa: Implications on the origin of peridotitic upper mantle, J. Geophys. Res., 91, 9367–9382, 1986.

    Article  Google Scholar 

  • Taniguchi, H., Surface tensions of melts in the system CaMgSi2O6-CaAl2Si2O8 and its structural significance, Contrib. Mineral. Petrol., 100, 484–489, 1988.

    Article  Google Scholar 

  • Taylor, G. J., Core formation in asteroids, J. Geophys. Res., 97, 14717–14726, 1992.

    Article  Google Scholar 

  • Toramaru, A., and N. Fujii, Connectivity of melt phase in a partially molten peridotite, J. Geophys. Res., 91, 9239–9259, 1986

    Article  Google Scholar 

  • Turcotte, D. L., and G. Schubert, Geodynamics, John Wiley, New York, 1982.

    Google Scholar 

  • Vicenzi, E.P., R.P. Rapp, and E.B. Watson, Crystal/melt wetting characteristics in partially-molten amphibolite, EOS Trans. Am. Geophys. Union, 69, 482, 1988.

    Google Scholar 

  • von Bargen, N., and H.S. Waff, Permeabilities, interfacial areas and curvatures of partially molten systems: results of numerical computations of equilibrium microstructures, J. Geophys. Res., 91, 9261–9276, 1986.

    Article  Google Scholar 

  • von Bargen, N., and H.S. Waff, Wetting of enstatite by basaltic melt at 1350°C and 1.0- to 2.5-GPa pressure, J. Geophys. Res., 93, 1153–1158, 1988.

    Article  Google Scholar 

  • Waff, H. S., and J.R. Bulau, Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic conditions, J. Geophys. Res., 84, 6109–6114, 1979.

    Article  Google Scholar 

  • Waff, H. S., and J.R. Bulau, Experimental determination of near-equilibrium textures in partially molten silicates at high pressures, in: High pressure research in geophysics, Adv. Earth Planet. Sci. 12., edited by S. Akimoto S. and M.H. Manghnani, pp. 229–236, Centre for Academic Publication, Tokyo, 1982.

    Chapter  Google Scholar 

  • Waff, H. S., and U.H. Faul, Effects of crystalline anisotropy on fluid distribution in ultramafic partial melts, J. Geophys. Res., 97, 9003–9014, 1992.

    Article  Google Scholar 

  • Walker, D., and C.B. Agee, Ureilite compaction, Meteoritics, 23, 81–91, 1988.

    Google Scholar 

  • Walker, D., S. Jurewicz, and E.B. Watson, Adcumulus dunite growth in a laboratory thermal gradient, Contrib. Mineral Petrol., 99, 306–319, 1988.

    Article  Google Scholar 

  • Wanamaker, B. J., and D.L. Kohlstedt, The effect of melt composition on the wetting angle between silicate melts and olivine, Phys. Chem. Minerals, 18, 26–36, 1991.

    Article  Google Scholar 

  • Watson, E.B., Diffusion in fluid-bearing and slightly melted rocks: experimental and numerical approaches illustrated by iron transport in dunite, Contrib. Mineral. Petrol., 107, 411–434, 1991.

    Article  Google Scholar 

  • Watson, E.B., and J.M. Brenan, Fluids in the lithosphere, 1. Experimentally determined wetting characteristics of CO2−H2O fluids and their implications for fluid transport, host-rock physical properties and fluid inclusion formation, Earth Planet. Sci. Lett., 85, 497–515,1987.

    Article  Google Scholar 

  • Watson, E. B., J.M. Brenan, and D.R. Baker, Distribution of fluids in the continental mantle, in: Continental Mantle, edited by M. A. Menzies, pp. 111–125, Clarendon, Oxford, 1990.

    Google Scholar 

  • Wolf, M.B. and P.J. Wyllie, Dehydration-melting of solid amphibolite at 10 kbar: textural development, liquid interconnectivity and application to the segregation of magmas, Mineral Petrol., 44, 151–179, 1991.

    Article  Google Scholar 

  • Wortis, M., Equilibrium crystal shapes and interfacial phase transitions, in: Chemistry and physics of solid surfaces VIII, edited by R. Vanselow and R.F. Howe, pp. 367–405, Springer Verlag, Berlin, 1988.

    Google Scholar 

  • Wray, P.J., The geometry of two-phase aggregates in which the shape of the second phase is determined by its dihedral angle, Acta Metall., 24, 125–135, 1976.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Laporte, D., Provost, A. (2000). The Grain-Scale Distribution of Silicate, Carbonate and Metallosulfide Partial Melts: a Review of Theory and Experiments. In: Bagdassarov, N., Laporte, D., Thompson, A.B. (eds) Physics and Chemistry of Partially Molten Rocks. Petrology and Structural Geology, vol 11. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4016-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4016-4_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5774-5

  • Online ISBN: 978-94-011-4016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics