Anelastic and Viscoelastic Behaviour of Partially Molten Rocks and Lavas

  • Nickolai S. Bagdassarov
Part of the Petrology and Structural Geology book series (PESG, volume 11)


The present study deals with the torsion deformation of partially molten samples of pyroxene gabbro-norite, spinel lherzolite, basalt lava and dacite pumice at high temperatures (600–1200C) and over a range of frequencies (20 Hz –2.10−3 Hz). The anelastic and viscoelastic properties of partially molten samples of rocks have been studied using oscillatory force torsion apparatus. Measurements of the complex shear modulus (G*) and internal friction (Q−1) at small strains (~ 10−7) show that samples do not possess a relaxed shear viscosity at the highest temperatures of experiments, if the melt phase is less than 60 vol%. Frequency dependence of the internal friction indicates that the viscoelasticity of the melt phase starts to overwhelm other mechanisms of anelastic behaviour at the high temperature - low frequency range ωτ 1, where ωτ is the normalised frequency. Below the softening temperature of the melt phase, there is a general dependence of Q−1 ∝ ω−0.17±0.01, where ω is the angular velocity of forced oscillations. Above the softening temperature, Q−1 ∝ ω−α where the empirical exponent α > 0.35 and depends on the melt fraction and the shape of the crystals. At low temperatures and moderate melt fractions (10–20 vol%), there may be a band of frequencies and temperatures where internal friction has a weak frequency dependence or some poorly resolved peaks. The nature of these peaks can be associated with several shear stress relaxation processes such as grain boundary sliding, rotation of grains suspended in the viscous melt, and movement of melt between adjacent melt pockets. The relative contribution of these relaxation processes depends on the melt fraction, grain size and normalised frequency ωτ.

Key words

anelasticity viscoelasticity complex shear modulus internal friction partial melting pyroxen gabbro spinel lherzolite basalt lava cryptodome dacite 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alidibirov, M., D.B. Dingwell, R.J. Stevenson, K.-U. Hess, S.L. Webb, and J. Zinke, Physical properties of the 1980 Mount St. Helens cryptodome magma, Bull. Volcanol., 59, 103–111, 1997.CrossRefGoogle Scholar
  2. Anderson, D.L., Theory of the Earth, pp. 279–302, Blackwell Scie. Publ., Boston, 1989.Google Scholar
  3. Anderson, D.L., and J.W. Given, Absorption band Q model for the Earth, J. Geophys. Res., 87, 3993–3904, 1982.CrossRefGoogle Scholar
  4. Anderson, D.L., and J.B. Minster, The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble, Geophys. J. R. astr. Soc., 58, 431–440, 1979.CrossRefGoogle Scholar
  5. Arzi, A., Critical phenomena in the rheology of partially melted rocks, Tectonophysics, 44, 173–184, 1978.CrossRefGoogle Scholar
  6. Bagdassarov, N.S., Viscoelastic properties of mica based glass ceramic aggregate, Phys. Chem. Miner., 26, 513–520, 1999.CrossRefGoogle Scholar
  7. Bagdassarov, N.S., and D.B. Dingwell, Frequency dependent rheology of vesicular rhyolite. J. Geophys. Res., 98, 6477–6487, 1993.CrossRefGoogle Scholar
  8. Bagdassarov, N.S., D.B. Dingwell, and S.L. Webb, Effect of boron, phosphorus and fluorine on shear stress relaxation in haplogranite melts, Eur. J. Mineral., 5, 409–425, 1993.Google Scholar
  9. Bagdassarov, N.S., D.B. Dingwell, and S.L. Webb, Viscoelasticity of crystal- and bubble-bearing rhyolite melts, Phys. Earth Planet. Inter., 83, 83–89, 1994.CrossRefGoogle Scholar
  10. Bagdassarov, N.S., and A.M. Dorfman, Viscoelastic behaviour of partially molten granites, Tectonophysics, 290, 27 – 45, 1998.CrossRefGoogle Scholar
  11. Berckhemer, H., F. Auer, and J. Drisler, High-temperature anelasticity and elasticity of mantle peridotite, Phys. Earth Planet. Inter., 20, 48–59, 1979.CrossRefGoogle Scholar
  12. Berckhemer, H., W. Kampfmann, and E. Aulbach, Anelasticity and elasticity of mantle rocks near partial melting, in: High-Pressure Researches in Geoscience, edited by E.W. Schreyer, pp. 113–132, Schwaizerbart’sche Verlagsbuchhandlung, Stuttgart, 1982a.Google Scholar
  13. Berckhemer, H., W. Kampfmann, E. Aulbach, and H. Schmeling, Shear modulus and Q of forsterite and dunite near partial melting from forced-oscillation experiments, Phys. Earth Planet. Inter. 29, 30–41, 1982b.CrossRefGoogle Scholar
  14. Berryman, J.G., Long-wavelength propagation in composite elastic media. 1. Spherical inclusions. 2. Ellipsoidal inclusions, J. Acoust. Soc. Am., 68(6), 1809–1831, 1980.CrossRefGoogle Scholar
  15. Brawer, S., Relaxation in viscous liquids and glasses, pp. 131–142, Amer Cer Soc, Inc. Columbus, Ohio, 1985.Google Scholar
  16. Carter, N.L., and S. Kirby, Transient creep and semi-brittle behavior of crystalline rocks, Pure Appl. Geophys, 116, 807–839, 1978.CrossRefGoogle Scholar
  17. Caputo, M., Linear models of dissipation whose Q is almost frequency independent — II,. Geophys J. R astr Soc., 13, 529–539, 1967.CrossRefGoogle Scholar
  18. Cooper, R.F., Differential stress-induced melt migration: an experimental approach, J. Geophys. Res., 95, 6979–6992, 1990.CrossRefGoogle Scholar
  19. Cooper, R.F., D.L. Kohlstedt, and K. Chyung, Solution-precipitation enhanced creep in solid-liquid aggregates which display a non-zero dihedral angle, Acta Metall., 37, 1759–1771, 1989.CrossRefGoogle Scholar
  20. Day, D.E., and G.E. Rindone, Internal friction of progressively crystallised glasses, J. Amer. Cer Soc., 44, 161–167, 1961.CrossRefGoogle Scholar
  21. Drury, M.R., and J.D. Fitz Gerald, Grain boundary melt films in an experimentally deformed olivine-pyroxene rocks: implications for melt distribution in upper mantle rocks, Geophys. Res. Lett., 23, 701–704, 1996.CrossRefGoogle Scholar
  22. Dryden J.R., D. Kucerovsky, D.S. Wilkinson, and D.F. Watt, Creep deformation due to a viscous grain boundary phase, Acta Metall., 37, 2007–2015, 1989.CrossRefGoogle Scholar
  23. Esquivel-Sirvent, R., D.H. Green, and S.S. Yun, Critical behavior in the fluid/solid transition of suspensions, Appl. Phys. Lett., 67, 3087 – 3089, 1995.CrossRefGoogle Scholar
  24. Fernandez, A.N., and B. Barbarin, Relative rheology of coeval mafic and felsic magmas: Nature resulting interaction process. Shape and mineral fabrics of mafic microgranular enclaves, in: Enclaves and granite petrology. Developments in Petrology 13, edited by J. Didier and B. Barbarin, pp. 263–276, Elsevier, Amsterdam — Oxford — New York —Tokyo, 1991.Google Scholar
  25. Findley, W.N., J.S. Lai, and K. Onaran, Creep and relaxation of nonlinear viscoelstic materials, 368 pp., North-Holland Publishing Company, Amsterdam-NY-Oxford, 1976.Google Scholar
  26. Getting, I.C., J. Paffeholz, and H.A. Spetzler, Measuring attenuation in geologic materials at seismic frequencies and amplitudes, in: The brittle-ductile transition in rocks, edited by A. Duba et al., pp. 239–243, AGU, Washington, 1990.CrossRefGoogle Scholar
  27. Gittus, J., Creep, viscoelasticity and creep fracture in solids, 725 pp., Applied Science Publishers, London, 1975.Google Scholar
  28. Götze W., and L. Sjögren, Relaxation processes in supercooled liquids, Rep. Progr. Phys., 55, 241–376, 1992.CrossRefGoogle Scholar
  29. Green, D.H., and R.F. Cooper, Dilatational anelasticity in partial melts: viscosity, attenuation, and velocity dispersion, J. Geophys. Res., 98, 19,807–19,817, 1993Google Scholar
  30. Green, D.H., R.F. Cooper, and S. Zhang, Attenuation spectra of olivine/basalt partial melts: transformation of Newtonian creep response, Geophys. Res. Lett., 17, 2097–2100, 1990.CrossRefGoogle Scholar
  31. Gribb, T.T., and R.F. Cooper, Low-frequency shear attenuation in polycrstalline olivine: Grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology, J. Geophys. Res., 103, 27,267–27,279, 1998.CrossRefGoogle Scholar
  32. Gribb, T.T., S. Zhang, and R.F. Cooper, Melt migration and related attenuation in equilibrated partial melts, in: Magmatic systems, edited by M.P. Ryan, pp. 19–36, Acad. Press, San Diego, 1994.CrossRefGoogle Scholar
  33. Gueguen, Y., M. Darot, P. Mazot, and J. Woigard, Q−1 of forsterite single crystals. Phys. Earth Planet. Inter., 55, 254–258, 1989.CrossRefGoogle Scholar
  34. Gueguen, Y., J. Woirgard, and M. Darot, Attenuation mechanism and anelasticity in the upper mantle, in: Anelasticity in the Earth, Geodynamic series, vol 4, edited by F.D. Stacey, M.S. Paterson and A. Nicholas, pp. 86–94, AGU GSA, Boulder Colorado, 1981.Google Scholar
  35. Hanson, D.R., and H.A. Spetzler, Transient creep in natural and synthetic, iron-bearing olivine single crystals: mechanical results and dislocation microstructures, Tectonophysics, 235, 293–315, 1994.CrossRefGoogle Scholar
  36. Hill, R., A self-consistent mechanics of composite materials,. J. Mech. Phys. Solids, 13, 213–222, 1965.CrossRefGoogle Scholar
  37. Isaak, D.G., High-temperature anelsticity of iron-bearing olivines. J. Geophys. Res., 97, 1871–1885, 1992.CrossRefGoogle Scholar
  38. Ivins, E.R., and C.G. Sammis, On lateral viscosity contrast in the mantle and the rheology of low-frequency geodynamics, J. Geophys. Res., 123, 305 – 322, 1995.Google Scholar
  39. Ivins, E.R., and C.G. Sammis, Transient creep of composite lower crust. 1. Constitutive theory, J. Geophys. Res., 101, 27, 981– 28,004, 1996.Google Scholar
  40. Jackson, I., Progress in the experimental study of seismic wave attenuation, Annu.. Rev. Earth Planet. Sci., 21, 375–406, 1993.CrossRefGoogle Scholar
  41. Jackson, I., and M.S. Paterson, Shear modulus and internal friction of calcite rocks at seismic frequencies: pressure, frequency and grain size dependence, Phys. Earth Planet. Inter., 45, 349–367, 1987.CrossRefGoogle Scholar
  42. Jackson, I., M.S. Paterson, and J.D. Fitz Gerald, Seismic wave dispersion and attenuation in Aheim dunite: an experimental study, Geophys. J. Int., 108, 517–534, 1992.CrossRefGoogle Scholar
  43. Jackson, I., M. Paterson, H. Niesler, and R.M. Waterford, Rock anelasticity measurements at high pressure, low strain amplitude and seismic frequency, Geophys. Res. Lett., 11, 1235–1238, 1984.CrossRefGoogle Scholar
  44. Jäckle, J., Models of glass transition, Rep. Prog. Phys., 49, 171–231, 1986.CrossRefGoogle Scholar
  45. Ji, S., and P. Zhao, Strength of two-phase rocks: a model based on fiber-loading theory, J. Struct. Geology, 16, 253–262, 1994.CrossRefGoogle Scholar
  46. Johnson, D.H., and M.N. Toksöz, Thermal cracking and amplitude dependent attenuation, J. Geophys. Res., 85, 937–942, 1980.CrossRefGoogle Scholar
  47. Kampfmann, W., Laborexperimente zum elastischen und anelastischen Verhalten hochtemperierter magmatischer Gesteine im Frequenzbereich seismischer Wellen. Berichte des Instituts für Meteorologie und Geophysik, 137 pp., J. W. Goethe Universität Frankfurt, Frankfurt/Main, 1984.Google Scholar
  48. Kampfmann, W., and H. Berckhemer, High temperature experiments on the elastic and anelastic behaviour of magmatic rocks, Phys. Earth Planet. Inter., 40, 223–247, 1985.CrossRefGoogle Scholar
  49. Karato, S., and H.A. Spetzler, Defect microdynamics in minerals and solid-state mechanisms of seismic wave attenuation and velocity dispersion in the mantle, Rev. Geophys., 28, 399–421, 1990.CrossRefGoogle Scholar
  50. Kê, T.-S., A grain boundary model and the mechanism of viscous intercrystalline slip, J. Appl. Phys., 20, 274–280, 1949.CrossRefGoogle Scholar
  51. Kohlstedt, D.L., and M.E., Zimmermann, Rheology of partially molten mantle rocks, Ann. Rev. Planet. Scie., 24, 41– 62, 1996.CrossRefGoogle Scholar
  52. Körnig, M., and G. Müller, Rheological models and interpretation of postglacial uplift, Geophys. J. Int., 98, 243–253, 1989.CrossRefGoogle Scholar
  53. Landau, L.D., and E.M., Lifshitz, Fluid Mechanics. Course of Theoretical Physics, vol. 6, Hydrodynamics, 730 pp., 2-d ed., Pergamon Press, New York, 1987.Google Scholar
  54. Leak, G.M., Grain boundary damping I: Pure Iron, Proc. Phys. Soc., 78, 1520–1528, 1961.CrossRefGoogle Scholar
  55. Mavko, G.M., Velocity and attenuation in partially molten rocks, J. Geophys. Res., 85, 5173–5189, 1980.CrossRefGoogle Scholar
  56. Mavko, G.M., and A., Nur, Melt squirt in the astenosphere. J. Geophys. Res., 80, 1444–1448, 1975.CrossRefGoogle Scholar
  57. Means, W.D., and M.W. Jessel, Accommodation migration of grain boundaries, Tectonophysics, 127, 67 – 86, 1986.CrossRefGoogle Scholar
  58. Mosher, D.R., and R. Raj, Use of the Internal friction technique to measure rates of grain boundary sliding, Acta Metall., 22, 1469–1474, 1974.CrossRefGoogle Scholar
  59. Müller, G., Generalised Maxwell bodies and estimates of mantle viscosity, Geophys. J. R. astr. Soc., 87, 1113–1141, 1986.CrossRefGoogle Scholar
  60. Nowick, A.S., and B.S. Berry, Anelastic relaxation in crystalline solids, 678 pp., Academic Press, New York – London, 1972.Google Scholar
  61. O’Connel, R.J., and B. Budiansky, Viscoelastic properties of fluid-saturated cracked solids, J. Geophys. Res., 82, 5719–5735, 1977.CrossRefGoogle Scholar
  62. Pinkerton, H., R.A. Herd, R.M. Kent, and L. Wilson, Field measurements of the rheological properties of basaltic lavas, Lunar and Planetary Science, XXVI, 1127–1128, 1995.Google Scholar
  63. Pinkerton, H., and R. Stevenson, Methods determining the rheological properties of magmas at subsolidus temperatures, J. Volcan. Getherm. Res., 53, 47–66, 1992.CrossRefGoogle Scholar
  64. Pharr, G.M., and M.F. Ashby, On creep enhanced by a liquid phase, Acta Metall., 31, 129–138, 1983.CrossRefGoogle Scholar
  65. Plass, L., Wärmeubergang und Druckverlust bei Feststoff-Flüssig-Suspesionen feiner Teilchen im gesamten pumpfähigen Konzentrazionsbereich, Ph. D. thesis, Universität Erlangen-Nurnberg, 1972.Google Scholar
  66. Pusey, P.N., and W. van Megen, Phase behaviour of concentrated suspensions of nearly hard colloidal spheres, Nature, 320, 340–342, 1986.CrossRefGoogle Scholar
  67. Raj, R., Transient behaviour of diffusion induced creep and creep rupture, Metall Trans., A, 6, 1499–1509, 1975.CrossRefGoogle Scholar
  68. Raj, R., Creep in polycrystalline aggregates by matter transport through a liquid phase, J. Geophys. Res., 87, 4731–4739, 1982.CrossRefGoogle Scholar
  69. Raj, R., and M.F. Ashby, On grain boundary sliding and diffusional creep, Metal. Trans., 2, 1113–1127, 1971.CrossRefGoogle Scholar
  70. Rutherford, M.J., H. Sigurdsson, S. Carey, and A. Davis, The May 18, 1980 eruption of Mount St. Helens 1. melt composition and experimental phase equilibria, J. Geophys. Res., 90, 2929–2947, 1985.CrossRefGoogle Scholar
  71. Rutter, E. H., and D.H. Neumann, Experimental deformation of partially molten Westerly granite under fluid-absent conditions, with implications for the extraction of granitic magmas, J. Geophys. Res., 100, 15 697–15 715, 1995.Google Scholar
  72. Ryerson, F.J., H.C. Weed, and A.J. Piwinskii, Rheology of subliquidus magmas. 1. Picritic compositions, J. Volcanol. Geotherm. Res., 93, 3421–3436, 1988.Google Scholar
  73. Sato, H., S. Sacks, T. Murase, G. Muncill, and H. Fukuyama, Qp — melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle, J. Geophys. Res., 94, 10,647–10,661, 1989.Google Scholar
  74. Smith, B.K., and F.O. Carpenter, Transient creep in orthosilicates, Phys. Earth. Planet. Inter., 49, 314–324, 1987.CrossRefGoogle Scholar
  75. Tonn, R., Comparison of seven methods for the computation of Q, Phys. Earth Planet. Inter., 55, 259–268, 1989.CrossRefGoogle Scholar
  76. Turnbaugh, J.E., and F.H. Norton, Low-frequency grain-boundary relaxation in alumina, J. Amer. Cer. Soc., 51, 344–348, 1968.CrossRefGoogle Scholar
  77. Ungarish, M., Hydrodynamics of suspensions, Springer-Verlag, Berlin — Heidelberg, 1993.Google Scholar
  78. Versteeg, V.A., and D.L. Kohlstedt, Internal friction in lithium aluminosilicate glass-ceramics, J. Am. Ceram. Soc., 77, 1169–1177, 1994.CrossRefGoogle Scholar
  79. Walpole, L.J., On the overall elastic moduli of composite materials, J. Mech. Phys. Solids., 17, 235–251, 1969.CrossRefGoogle Scholar
  80. Weiner, A.T., M.H. Manghnani, and R. Raj, Internal friction in tholeiitic basalt, J. Geophys. Res., 92, 11,635–11,643, 1987.CrossRefGoogle Scholar
  81. Wu, T.T., The effect of the inclusion shape on the elastic moduli of a two-phase material, Int. J. Solid Structure, 2, 1–8, 1966.CrossRefGoogle Scholar
  82. Zener, C, Elasticity and anelasticity of metals, 163 pp., University of Chicago Press, Chicago, 1948.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • Nickolai S. Bagdassarov
    • 1
  1. 1.Institut für Meteorologie und GeophysikJ. W. Goethe Universität FrankfurtFrankfurt/MainGermany

Personalised recommendations