Environmental physiology and energetics

  • L. G. Ross
Part of the Fish and Fisheries Series book series (FIFI, volume 25)

Abstract

The tilapias are extremely successful fishes and this success is largely due to their robustness, tolerance, flexibility and overall plasticity. This plasticity of growth, reproductive and developmental processes is evident from their well-known diversification and radiation into available niches, and is characterized by a remarkable physiological hardiness, adaptability and general levels of tolerance to most potentially limiting environmental variables. Although essentially freshwater species, many tilapias are euryhaline and so can be cultured in fresh, brackish or salt water. While they are not cold tolerant, they are eurythermal over a wide range, and this only limits their distribution to tropical, sub-tropical and warm temperate climates. They also have a strong reputation for tolerance of low dissolved oxygen (DO) and are quite resistant to reasonable physical handling, more so than most other fishes.

Keywords

Toxicity Urea Respiration Shrinkage Assimilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Al-Abdul-Elah, K. (1990) Biotic and Abiotic Factors Influencing Initial Swimbladder Inflation of the Blue-Finned Sea Bream, PhD thesis, University of Stirling.Google Scholar
  2. Allanson, B.R. and Noble, R.G. (1964) The tolerances of Tilapia mossambica (Peters) to high temperature. Trans. Am. Fish. Soc. 93, 323–332.CrossRefGoogle Scholar
  3. Allanson, B.R., Bok, A. and van Wyk, N.I. (1971) The influences of exposure to low temperature on Tilapia mossambica Peters (Cichlidae). II. Changes in serum osmolarity, sodium and chloride concentrations. J. Fish Biol. 3, 181–185.Google Scholar
  4. Balarin, J.D. and Hatton, J.P. (1979) Tilapia. A Guide to their Biology and Culture in Africa, Unit of Aquatic Pathobiology, University of Stirling, Scotland.Google Scholar
  5. Bardach, J.E., Ryther, J.H. and McLarney, W.O. (1972) Aquaculture: The Farming and Husbandry of Freshwater and Marine Organisms, Wiley, New York.Google Scholar
  6. Becker, K. and Fishelson, L. (1986) Standard and routine metabolic rate, critical oxygen tension and spontaneous scope for activity of tilapias, in Proceedings of the First Asian Fisheries Forum (eds J.L. Maclean, L.B. Dizon, L.V. Hosillos), Asian Fisheries Society, Manila, Philippines, pp. 623–628.Google Scholar
  7. Boyd, C.E. (1982) Water Quality Management for Pond Fish Culture, Elsevier, Amsterdam.Google Scholar
  8. Brett, J.R. (1979) Factors affecting fish growth, in Fish Physiology Volume 8 (eds W.S. Hoar, D.J. Randall and J.R. Brett), Academic Press, New York, pp. 599–675.Google Scholar
  9. Brett, J.R. and Groves, T.D.D. (1979) Physiological energetics, in Fish Physiology Volume 8 (eds W.S. Hoar, D.J. Randall and J.R. Brett), Academic Press, New York, pp. 279–281.Google Scholar
  10. Brockington, N.R. (1979) Computer Modelling for Agriculture, Oxford University Press, Oxford, UK.Google Scholar
  11. Brunty, J.L., Bucklin, R.A., Davis, J., Baird, CD. and Norstedt, R.A. (1997) The influence of feed protein intake on tilapia ammonia production. Aquacult. Eng. 16, 161–166.CrossRefGoogle Scholar
  12. Caulton, M.S. (1977) The effect of temperature on routine metabolism in Tilapia rendalli Boulenger. J Fish Biol. 11, 549–553.CrossRefGoogle Scholar
  13. Caulton, M.S. (1978) The effect of temperature and mass on routine metabolism in Sarotherodon (Tilapia) mossambicus (Peters). J. Fish Biol. 13, 195–201.CrossRefGoogle Scholar
  14. Caulton, M.S. (1982) Feeding, metabolism and growth of tilapias: some quantitative considerations, in The Biology and Culture of Tilapias (1CLARM Conference Proceedings, Vol. 7) (eds R.S.V. Pullin and R.H. Lowe-McConnell), ICLARM, Manila, pp. 157–180.Google Scholar
  15. Chatain, B. and Dewavrin, G. (1989) The effects of abnormalities in the development of the swimbladder on the mortality of Dicentrarchus labrax during weaning. Aqua-culture 78, 55–61.CrossRefGoogle Scholar
  16. Chatain, B. and Ounais-Guschemann, N. (1990) Improved rate of initial swimbladder inflation in intensely reared Sparus auratus. Aquaculture 84, 345–353.CrossRefGoogle Scholar
  17. Chervinski, J. (1982) Environmental physiology of tilapias, in The Biology and Culture of Tilapias (ICLARM Conference Proceedings, Vol. 7) (eds R.S.V. Pullin and R.H. Lowe-McConnell), ICLARM, Manila, pp. 119–128.Google Scholar
  18. Chervinski, J. and Lahav, M. (1976) The effect of exposure to low temperature on fingerlings of local tilapia (Tilapia aurea) (Steindachner) and imported tilapia (Tilapia vulcani) (Trewavas) and Tilapia nilotica (Linne) in Israel. Bamidgeh 28, 25–29.Google Scholar
  19. Coche, A.G. (1977) Premiers résultats de l’élevage en cages de Tilapia nilotica (L.) dans le Lac Kossou, Côd’Ivoire. Aquaculture 10, 109–140.CrossRefGoogle Scholar
  20. Coche, A. and Edwards, D. (1989) Selected Aspects of Warmwater Fish Culture, GCP/INT/435/AGF. FAO, Rome, Italy.Google Scholar
  21. Cornacchia, J.W. (1982) Studies on the Development and Inflation of the Swimbladder in Two Physoclistous Fish, Morone saxatilis and Sarotherodon mossambica, PhD thesis, University of California, Davis.Google Scholar
  22. Dehadrai, P.V. (1959) On the swimbladder and its connection with the internal ear in cichlidae. Proc. Nat. Inst. Set, India 25(b), 254–261.Google Scholar
  23. Denzer, H.W. (1968) Studies on the physiology of young Tilapia. FAO Fish. Rep. 44, 356–366.Google Scholar
  24. Dijk, P.L.M., Thillart, G.E.E.J.M. and Wendelaar-Bonga, S.E. (1993) The influence of gradual water acidification on the oxygen consumption pattern of fish. Comp. Biochem. Physiol. 105C, 421–427.Google Scholar
  25. Doroshev, S.I., Cornacchia, J.W. and Hogan, K. (1981) Initial swimbladder inflation in the larvae of physoclistous fishes and its importance for larval culture. Rapports et proces-verbaux de Reunion, Cons. Int. l’Fxp. Mer. 178, 478–500.Google Scholar
  26. Dussart, J. (1963) Contribution a l’étude de l’adaptation des tilapias (Pisces, Cichlidae) a la vie en milieu mal oxygène. Hydrobiologia 21, 328–341.CrossRefGoogle Scholar
  27. Farmer, G.J. and Beamish, F.W.H. (1969) Oxygen consumption of Tilapia nilotica in relation to swimming speed and salinity. J. Fish. Res. Bd. Can. 26, 2807–2821.CrossRefGoogle Scholar
  28. Febry, R. and Lutz, P. (1987) Energy partitioning in fish: The activity-related cost of osmoregulation in a euryhaline cichlid. J. Exp. Biol. 128, 63–85.Google Scholar
  29. Fernandes, M.N. and Rantin, F.T. (1986) Thermal acclimation of the teleost Oreochromis niloticus (Pisces, Cichlidae). Rev. Hydrobiol. Tropica. 19, 163–168.Google Scholar
  30. Fernandes, M.N. and Rantin, F.T. (1994) Relationships between oxygen availability and metabolic cost of breathing in Nile tilapia (Oreochromis niloticus): Aquaculture consequences. Aquaculture 127, 339–346CrossRefGoogle Scholar
  31. Fish, G.R. (1956) Some aspects of the respiration of six species of fish from Uganda. J Exp. Biol. 33, 186–195.Google Scholar
  32. Fryer, G. and Iles, T.D. (1972) The Cichlid Fishes of the Great Lakes of Africa: their Biology and Evolution, Oliver and Boyd, Edinburgh.Google Scholar
  33. Gleastine, B.W. (1974) A Study of the Cichlid Tilapia aurea (Steindachner) in a Thermally Modified Texas Reservoir, MSc thesis, Texas A&M University.Google Scholar
  34. Hassan, R. (1992) Acute Ammonia Toxicity of Red Tilapia and Seabass. Fish. Bull. Dept Fish., Kuala Lumpur, Malaysia. No 73.Google Scholar
  35. Hocutt, C.H. and Tilney, R.L. (1985) Changes in gill morphology of Oreochromis mossambicus subjected to heat stress. Env. Biol. Fishes 14, 107–114.CrossRefGoogle Scholar
  36. Hofer, R. and Schiemer, F. (1983) Feeding ecology, assimilation efficiencies and energetics of two herbivorous fish: Sarotherodon (Tilapia) mossambicus (Peters) and Puntius filamentosus (Cuv. et Val.), in Limnology of Parakrama Samudra-Sri Lanka (ed. F. Schiemer), Dr W. Junk, The Hague, pp. 155–164.CrossRefGoogle Scholar
  37. Huang, Y., Jia, J., He, D., Chai, M. and Deng, X. (1996) Electrophysiological observations on sacculus of Tilapia sp. J. Oceanogr. Taiwan Straits 15, 182–190.Google Scholar
  38. Huey, D.W., Simco, B.A. and Criswell, D.W. (1980) Nitrite-induced methaemoglobin formation in channel catfish. Trans Am. Fish. Soc. 109, 558–562.CrossRefGoogle Scholar
  39. Job, S.V. (1969) The respiratory metabolism of Tilapia mossambica (Teleostei). I. The effect of size, temperature and salinity. Mar. Biol. (Berl.) 2, 121–126.CrossRefGoogle Scholar
  40. Jobling, M. (1994) Fish Bioenergetics, Chapman and Hall, London.Google Scholar
  41. Karuppannan, N.V. (1981) A note on the locomotory metabolism (swimming energetics) of the cichlid fish Tilapia mossambica (Peters). Ind. Zool. 5, 107–109.Google Scholar
  42. Kutty, M.N. (1972) Respiratory quotient and ammonia excretion in Tilapia mossambica. Mar. Biol. (Berlin) 16, 126–133.Google Scholar
  43. Lee, J.C. (1979) Reproduction and Hybridization of Three Cichlid Fishes, Tilapia aurea (Steindachner), T. hornorum (Trewavas) and T. nilotica (Linnaeus) in Aquaria and in Plastic Pools, PhD dissertation, Auburn University, Auburn, Alabama.Google Scholar
  44. Lewis, W.M. and Morris, D.P. (1986) Toxicity of nitrite to fish: A review. Trans Am. Fish. Soc. 115, 183–195.CrossRefGoogle Scholar
  45. Lin, C.C. and Liu, C.I. (1989) Test for ammomnia toxicity of cultured hybrid tilapia, in Proceedings of the Second Asian Fisheries Forum (eds R. Hirano and I Hanyu), Tokyo, Japan, pp. 457–460.Google Scholar
  46. Lin, C.K. (1986) Acidification and reclamation of acid sulfate soil fishponds in Thailand, in Proceedings of the First Asian Fisheries Forum (eds J.L. Maclean, L.B. Dizon and L.V. Hosillos), ICLARM, Manila, pp. 71–74.Google Scholar
  47. Lowe-McConnell, R.H. (1982) Tilapias in fish communities, in The Biology and Culture of Tilapias (ICLARM Conference Proceedings, Vol. 7) (eds R.S.V. Pullin and R.H. Lowe-McConnell), ICLARM, Manila, pp. 83–114.Google Scholar
  48. Maar, A., Mortimer, M.A.E. and van der Lingen, I. (1966) Fish Culture in Central East Africa, FAO, Rome.Google Scholar
  49. McDonald, M.E. (1985) Carbon budgets for a phytoplanktivorous fish fed three different unialgal populations. Oecologia 66, 246–249.Google Scholar
  50. McEwen, R.S. (1940) The early development of the swimbladder and certain adjacent parts in Hemichromis bimaculatus. J. Morphol. 67, 1–59.CrossRefGoogle Scholar
  51. McKinney, R.W. (1990) Factors Influencing Ammonia Excretion in Tilapia (Oreochromis niloticus L.), MSc thesis, University of Stirling.Google Scholar
  52. Melard, C.H. and Philippart, J.C. (1982) Pisciculture intensive de Sarotherodon niloticus (L.) dans les effluents thermiques d’une centrale nucléaire en Belgique. Paper presented at the EIFAC symposium on new Developments in Utilisation of Heated Effluents and of Recirculation Systems for Intensive Aquaculture. Stavanger, Norway. EIFAC/80/Symp./DOC.E/ll.Google Scholar
  53. Meyer, D.I. and Brune, D.E. (1982) Computer modelling of diurnal oxygen levels in a stillwater aquaculture pond. Aquacult. Eng. 1, 245–261.CrossRefGoogle Scholar
  54. Meyer-Burgdorff, K.-H., Osman, M.F. and Guenther, K.D. (1989) Energy metabolism in Oreochromis niloticus. Aquaculture 79, 283–291.CrossRefGoogle Scholar
  55. Mires, D. (1995) The tilapias, in Production of Aquatic Animals: Fishes (eds C.E. Nash and A.J. Novotny), Elsevier, Amsterdam, pp. 133–152.Google Scholar
  56. Mironova, N.V. (1976) Changes in the energy balance of Tilapia mossambica in relation to temperature and ration size. J. Ichthyol. 16, 120–129.Google Scholar
  57. Morgan, J.D., Sakamoto, T., Grau, E.G. and Iwama, G.K. (1997) Physiological and respiratory responses of the Mozambique tilapia (Oreochromis mossambicus) to salinity acclimation. Comp. Biochem. Physiol. 117A, 391–398.CrossRefGoogle Scholar
  58. Morgan, PR. (1972) Causes of mortality in the endemic tilapia of lake Chilwa (Malawi). Hydrobiologia 40, 101–119.CrossRefGoogle Scholar
  59. Myers, G.S. (1938) Freshwater fishes and West Indian zoogeography, in Smithsonian Report for 1927. Smithsonian Institution Publication 3465, Washington. D.C., pp. 339–364.Google Scholar
  60. Murthy, V.K., Reddanna, P. and Govindappa, S. (1981) Hepatic carbohydrate metabolism in Tilapia mossambica (Peters) acclimated to low environmental pH. Can. J. Zool. 59, 400–404.CrossRefGoogle Scholar
  61. Musisi, L.M. (1984) The Nutrition, Growth and Energetics of Tilapia Sarotherodon mossambicus, PhD thesis, University of London.Google Scholar
  62. Nagarajan, K. and Gopal, V. (1983) Effect of photoperiod on oxygen consumption and food utilisation in Tilapia mossambica Peters. Proc. Natl. Sci. Acad. India 53B, 217–225.Google Scholar
  63. Narahara, A., Bergman, H.L., Laurent, P., Maina, J.N., Walsh, P.J. and Wood, C.M. (1995) Respiratory physiology of the Lake Magadi tilapia (Oreochromis alcalicus grahami), a fish adapted to a hot, alkaline, and frequently hypoxic environment. Physiol. Zool. 69, 1114–1136Google Scholar
  64. Northcott, M., Beveridge, M.C.M. and Ross, L.G. (1991) A laboratory investigation of the filtration and ingestion rates of the tilapia, Oreochromis niloticus, feeding on two species of blue-green algae. Env. Biol. Fishes 31, 75–85.CrossRefGoogle Scholar
  65. Okoye, R.N. (1982) Techniques for Transportation of Juvenile Tilapia, MSc thesis, University of Stirling, Stirling, UK.Google Scholar
  66. Palacheck, R.M. and Tomasso, J.R. (1984) Toxicity of nitrite to channel catfish (Ictalurus punctatus), tilapia (Tilapia aurea) and largemeouth bass (Micropterus salmoides): evidence for a nitrite exclusion mechanism. Can. J. Fish. Aquat. Sei. 41, 1739–1744.CrossRefGoogle Scholar
  67. Petrusewicz, K. and MacFadyen, A. (1970) Productivity of Terrestrial Animals, IBP Handbook No 13, Blackwell, Oxford.Google Scholar
  68. Philippart, J-Cl. and Ruwet, J-Cl. (1982) Ecology and distribution of the tilapias, in The Biology and Culture of Tilapias (1CLARM Conference Proceedings, Vol. 7) (eds R.S.V. Pullin and R.H. Lowe-McConnell), ICLARM, Manila, pp. 15–59.Google Scholar
  69. Randall, D.J., Wood, CM., Perry, S.F., Bergman, H., Maloiy, G.M.O., Mommsen, T.P. and Wright, P.A. (1989) Urea excretion as a strategy for survival in a fish living in very alkaline environment. Nature (Lond.) 337, 165–166.CrossRefGoogle Scholar
  70. Redner, B.D. and Stickney, R.R. (1979) Acclimation to ammonia by Tilapia aurea. Trans. Am. Fish. Soc. 108, 383–388.CrossRefGoogle Scholar
  71. Rodman, D.T. (1966) Sound productioin by the African cichlid Tilapia mossambica. lchthyologia 38, 279–280.Google Scholar
  72. Ross, L.G. (1979a) The haemodynamics of gas résorption from the physoclist swimbladder: The structure and morphometrics of the oval in Pollachius virens. J. Fish Biol. 14, 261–266.CrossRefGoogle Scholar
  73. Ross, L.G. (1979b) The haemodynamics of gas résorption from the physoclist swimbladder: II. The determination of blood flow-rate using radiolabelled micro-spheres. J. Fish Biol. 14, 389–393.CrossRefGoogle Scholar
  74. Ross, L.G. and Geddes, J.A. (1979) Sedation of warm-water fish species in aquaculture research. Aquaculture 16, 183–186.CrossRefGoogle Scholar
  75. Ross, L.G. and McKinney, R.W. (1988a) Photoperiod-mediated variation in respiratory rate of Oreochromis niloticus and its implications for tilapia culture, in Proceedings of the Second International Symposium on Tilapias in Aquaculture (ICLARM Conference Proceedings, Vol. 15) (eds R.S.V. Pullin, T. Bhukaswan, K. Tonguthai and J.L Maclean), ICLARM, Manila, pp. 421–428.Google Scholar
  76. Ross, L.G. and McKinney, R.W. (1988b) Respiratory cycles in Oreochromis niloticus measured using a six-channel microcomputer-operated respirometer. Comp. Biochem. Physiol. 89A, 637–643.CrossRefGoogle Scholar
  77. Ross, B. and Ross, L.G. (1983) The oxygen requirements of Oreochromis niloticus under adverse conditions, in Proceedings of the First International Symposium on Tilapia in Aquaculture (eds L. Fishelson and Z. Yaron), Tel Aviv University, Israel, pp. 134–143.Google Scholar
  78. Ross, L.G. and Ross, B. (1999) Anaesthetic and Sedative Techniques for Aquatic Animals, Blackwell, Oxford.Google Scholar
  79. Ross, L.G., McKinney, R.W. and Ross, B. (1988) Energy budgets for cultured tilapia, in Proceedings of the Second International Symposium on Tilapias in Aquaculture (ICLARM Conference Proceedings, Vol. 15) (eds R.S.V. Pullin, T. Bhukaswan, K. Tonguthai and J.L. Maclean), ICLARM, Manila, pp. 83–90.Google Scholar
  80. Ross, L.G., Mckinney, R.W., Cardwell, S.K., Fullarton, J.G., Roberts, S.E.J. and Ross, B. (1992) The effects of dietary protein content, lipid content and ration level on oxygen consumption and specific dynamic action in Oreochromis niloticus. Comp. Biochem. Physiol. 103A, 573–578.CrossRefGoogle Scholar
  81. Sarig, S. (1969) Winter storage of Tilapia. FAO Fish Cult. Bull. 2, 8–9.Google Scholar
  82. Sayer, M.D. and Davenport, J. (1987) The relative importance of the gills to ammonia and urea excretion in five seawater and one freshwater teleost species. J. Fish Biol. 31, 561–570.CrossRefGoogle Scholar
  83. Stickney, R.R. (1986) Tilapia tolerance of saline waters: a review. Prog. Fish-cult. 48, 161–167.CrossRefGoogle Scholar
  84. Suresh, A.V. and Kwei Lin, C. (1992) Tilapia culture in saline waters: a review. Aquaculture 106, 201–226.CrossRefGoogle Scholar
  85. Trewavas, E. (1983) Tilapiine fishes of the genera Sarotherodon, Oreochromis and Danakilia, British Museum, London.Google Scholar
  86. Van-Dam, A.A. and Pauly, D. (1995) Simulation of the effects of oxygen on food consumption and growth of Nile tilapia, Oreochromis niloticus (L.). Aquacult. Res. 26, 427–440.CrossRefGoogle Scholar
  87. Wangead, C., Geater, A. and Tansakul, R. (1988) Effect of acid water on survival and growth rate of Nile tilapia (Oreochromis niloticus), in Proceedings of the Second International Symposium on Tilapias in Aquaculture (ICLARM Conference Proceedings, Vol. 15) (eds R.S.V. Pullin, T. Bhukaswan, K. Tonguthai and J.L. Maclean), ICLARM, Manila, pp. 433–437.Google Scholar
  88. Watanabe, W.O., Ching-Ming Kuo and Mei-Chan Huang (1985) Salinity tolerance of Nile tilapia fry (Oreochromis niloticus), spawned and hatched at various salinities. Aquaculture 48, 159–176.CrossRefGoogle Scholar
  89. Wendelaar Bonga, S.E., van der Meij, J.C.A., van der Krabben, W.A.W.A. and Flik, G. (1984) The effect of water acidification on prolactin cells and pars intermedia PAS-positive cells in the teleost fish Oreochromis (formerly Sarotherodon) mossambicus and Carassius auratus. CellTiss. Res. 238, 601–609.Google Scholar
  90. Wilkie, M.P. and Wood, CM. (1996) The adaptations of fish to extremely alkaline environments. Comp. Biochem. Physiol. 113b, 665–673.Google Scholar
  91. Wright, P.A. (1993) Nitrogen excretion and enzyme pathways for ureagenesis in freshwater tilpaia (Oreochromis niloticus). Physiol. Zool. 66, 881–901.Google Scholar
  92. Yashouv, A. (1960) Effect of low temperatures on Tilapia nilotica and Tilapia galilaea. Bamidgeh 12, 62–66.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2000

Authors and Affiliations

  • L. G. Ross

There are no affiliations available

Personalised recommendations