Skip to main content

Bacterial factors in inflammatory bowel disease pathogenesis

  • Chapter
  • 73 Accesses

Abstract

Intestinal bacteria and their products appear to contribute significantly to the pathogenesis of inflammatory bowel disease (IBD). Both commensal bacterial products, including lipopolysaccharides (LPS) and lipoteichoic acids, and potential pathogens may be implicated. Lamina propria cells in the intestinal mucosa are exposed to luminal LPS especially in the colon and distal ileum. CD14, the receptor for LPS—LPS binding protein complex, is expressed on blood monocytes recently recruited to the IBD mucosa. Activation of CD14 positive mononuclear phagocytes occurs at pg/ml concentrations of LPS resulting in protean biological effects, including secretion of proinflammatory cytokines, especially TNF-a, chemokines, proteases, and reactive oxygen and nitrogen species. Neutrophils recruited to the lesion of acute colitis induced in mice by oral dextran sulphate sodium similarly express CD14. The phenotype of inflammatory cells in the lesions of IBD therefore suggests a mechanism for persisting mucosal inflammation.

Recent insights into the importance of innate immunity as a front-line, early-detection antimicrobial defence system may be relevant to IBD pathogenesis. Innate immunity detects unique bacterial carbohydrate or lipid molecules using cell surface receptors, especially those on macrophages. Activation of these receptors initiates a discrete IL-12, interferon gamma pathway essential to macrophage killing of mycobacteria and some enteric bacterial pathogens. Inherited deficiency of peptides or their receptors in the IL-12—interferon gamma pathway results in susceptibility to mycobacterial and Salmonella infections as well as affecting granuloma formation in tissue. These recent findings suggest new avenues for exploring possible susceptibility factors in IBD.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ulevitch RJ. Recognition of bacterial endotoxin by receptor-dependent mechanisms. Adv Immunol 1993;53:267–89.

    Article  PubMed  CAS  Google Scholar 

  2. Cleveland MG, Gorham JD, Murphy TL, Tuomanen E, Murphy KM. Lipoteichoic aid preparations of Gram-positive bacteria induce interleukin-12 through a CD14-dependent pathway. Infect Immun 1996;64:1906–12.

    PubMed  CAS  Google Scholar 

  3. Gupta D, Kirkland TN, Viriyakosol S, Dziarski R. CD14 is a cell-activating receptor for bacterial peptidoglycan. J Biol Chem 1996;271:23310–6.

    Article  PubMed  CAS  Google Scholar 

  4. Mathison JC, Tobias PS, Wolfson E, Ulevitch RJ. Plasma lipopolysaccharide (LPS)-binding protein. J Immunol 1992;149:200–6.

    PubMed  CAS  Google Scholar 

  5. Martin TR, Mathison JC, Tobias PS et al. Lipopolysaccharide binding protein enhances the responsiveness of alveolar macrophages to bacterial lipopolysaccharide. J Clin Invest 1992;90:2209–19.

    Article  PubMed  CAS  Google Scholar 

  6. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14 serves as the cellular receptor for complexes of lipopolysaccharide with lipopolysaccharide binding protein. Science 1990;249:1431–3.

    Article  PubMed  CAS  Google Scholar 

  7. Martin TR, Mongovin SM, Tobias PS et al. The CD14 differentiation antigen mediates the development of endotoxin responsiveness during differentiation of mononuclear phagocytes. J Leuk Biol 1994;56:1–9.

    CAS  Google Scholar 

  8. Wright SD, Ramos RA, Hermanowski-Vosatka A, Rockwell P, Detmers PA. Activation of the adhesive capacity of CR3 on neutrophils by endotoxin: dependence on lipopolysaccharide binding protein and CDI4. J Exp Med 1991;173:1281.

    Article  PubMed  CAS  Google Scholar 

  9. Lee JD, Kato K, Tobias PS, Kirkland TN, Ulevitch RJ. Transfection of CD14 into 70Z/3 cells dramatically enhances the sensitivity to complexes of lipopolysaccharide (LPS) and LPS binding protein. J Exp Med 1992:175:1697–1705.

    Article  PubMed  CAS  Google Scholar 

  10. Medzhitov R, Preston-Hurlburt P, Janeway CA Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997;388:394–7.

    Article  PubMed  CAS  Google Scholar 

  11. Yang RB, Mark MR, Gray A et al. Toll-like receptor-2 mediates lipopolysaccharide-induced cellular signalling. Nature 1998;395:284 8.

    Google Scholar 

  12. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999:163:1–5.

    PubMed  CAS  Google Scholar 

  13. Grimm MC, Pavli P, Van de Pol E. Doe WE. Evidence for a CDI4+ population of monocytes in inflammatory bowel disease mucosa implications for pathogenesis. Clin Exp Immunol 1995;100:291–7.

    Article  PubMed  CAS  Google Scholar 

  14. Grimm MC, Elsbury SK, Pavli P, Doe WF. Enhanced expression and production of monocyte chemoattractant protein-1 in inflammatory bowel disease mucosa. J Leuk Biol 1996;56:804–2.

    Google Scholar 

  15. Targan SR, Hanauer SB, Van Deventer SJH et al. for the Crohn’s Disease cA2 Study Group. A short term study of chimeric monoclonal antibody cA2 to tumor necrosis factor. N Engl J Med 1997;337:1029–35.

    Article  PubMed  CAS  Google Scholar 

  16. McKenzie SJ, Baker MS, Buffinton GD, Doe WF. Evidence of oxidant-induced injury to epithelial cells during inflammatory bowel disease. J Clin Invest 1996;98:136–41.

    Article  PubMed  CAS  Google Scholar 

  17. Sartor RB, Cromartie WJ, Powell DW et al. Granulomatous enterocolitis induced in rats by purified bacterial cell wall fragments. Gastroenterology 1985;89:587–95.

    PubMed  CAS  Google Scholar 

  18. Elson Co, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology 1995;109: 1344--67.

    Article  Google Scholar 

  19. Fearon DT, Locksley RM. The instructive role of innate immunity in the acquired immune response. Science 1996;272:50 4.

    Google Scholar 

  20. Medzhitov R, Janeway CA Jr. Innate immune recognition and control of adaptive immune responses. Semin Immunol 1998;10:351–3.

    Article  PubMed  CAS  Google Scholar 

  21. Hoffman JA, Kafatos FC. Janeway CA, Ezekowitz RA. Phylogenetic perspectives in innate immunity. Science 1999;284:1313–18.

    Article  Google Scholar 

  22. Jouanguy E, Lamhamedi-Cherradi S, Lammas D et al. A human IFNGRI small deletion hotspot associated with dominant susceptibility to mycobacterial infection. Nature Genet 1999;21:1–9.

    Article  Google Scholar 

  23. Altare F, Lammas D, Revy R et al. Inherited Interleukin 12 deficiency in a child with Bacille Calmette-Guerin and Salmonella enteriticlis disseminated infection. J Clin Invest 1998;102:20350.

    Article  Google Scholar 

  24. Altare F, Durandy A, Lammas D et al. Impairment of mycobacterial immunity in human interleukin-12 receptor deficiency. Science 1998;280:1432–5.

    Article  PubMed  CAS  Google Scholar 

  25. Hubacek JA, Pit’ha J. Skodova Z, Stanek V, Poledne R. C(260) - T polymorphism in the promoter of the CD14 monocyte receptor gene as a risk factor for myocardial infarction. Circulation 1999;99:3218 20.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Doe, W.F. (2000). Bacterial factors in inflammatory bowel disease pathogenesis. In: Williams, C.N., et al. Trends in Inflammatory Bowel Disease Therapy 1999. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4002-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4002-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5769-1

  • Online ISBN: 978-94-011-4002-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics