Skip to main content

Mechanisms of virus-induced autoimmune disease

  • Chapter
Immunology and Liver

Part of the book series: Falk Symposium ((FASS,volume 114))

  • 123 Accesses

Abstract

Autoimmune disorders are diseases in which a vigorous immune reaction against certain self-antigens is induced, leading to pathological damage either in one organ or generalized in various tissues in the body. Generally, the immune system maintains a status of unresponsivenes towards self-antigens, while being able to mount an immune response against pathogen-derived antigens. Tolerance, at least on the level of T cells, is established and maintained by elimination of self-reactive cells in the thymus or, alternatively, when antigens are immunologically ignored because they are expressed at immunologically sequestered sites1-3 or when antigens do not reach a certain concentration level in lymphoid organs45. Thus, the decision whether an autoimmune reaction is initiated is probably made when a previously ignored antigen is presented in sufficient amounts and over a certain time in secondary lymphoid tissues. It is likely that antigen presentation by professional antigen presenting cells, i.e. dendritic cells and macrophages, in lymphoid tissues is the key step in the initiation of an anti-self response and to break the status of ignorance. Accordingly, the central questions for the initiation of T cell-mediated autoimmune diseases are ‘Which are the antigens that induce the primary immune response against the target organ?’ and ‘Which mechanisms lead to release of tissue antigen and subsequent presentation of these antigens in secondary lymphoid organs?’.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barker CF, Billingham RE. Immunologically privileged sites. Adv. Immunol. 1972.25:1.

    Article  Google Scholar 

  2. Ohashi PS, Oehen S, Buerki K et al. Ablation of ‘tolerance’ and induction of diabetes by virus infection in viral antigen transgenic mice. Cell.1991;65:305–317.

    Article  PubMed  CAS  Google Scholar 

  3. Oldstone MB, Nerenberg M, Southern P, Price J, Lewicki H. Virus infection triggers insulin-dependent diabetes mellitus in a transgenic model: role of anti-self (virus) immune response. Cell. 1991;65:319–331.

    Article  PubMed  CAS  Google Scholar 

  4. Ferber I, Schonrich G, Schenkel J, Mellor AL, Arnold B, Hammerling GJ. Levels of peripheral T cell tolerance induced by different doses of tolerogen. Science. 1994;263:674–676.

    Article  PubMed  CAS  Google Scholar 

  5. Kurts C, Heath WR, Kosaka H, Miller JF, Carbone FR. The peripheral deletion of autoreactive CD8+ T cells induced by cross-presentation of self-antigens involves signaling through CD95 (Fas, Apo-1). J Exp Med. 1998;188:415–420.

    Article  PubMed  CAS  Google Scholar 

  6. Oldstone MB. Molecular mimicry and autoimmune disease. Cell 1987;50:819–820.

    Article  PubMed  CAS  Google Scholar 

  7. Oldstone MB. Molecular mimicry as a mechanism for the cause and a probe uncovering etiologic agent(s) of autoimmune disease. Curr Top Microbiol Immunol. 1989;145:127–135.

    Article  PubMed  CAS  Google Scholar 

  8. Tough DF, Borrow P, Sprent J. Induction of bystander T cell proliferation by viruses and type I interferon in vivo. Science. 1996;272:1947–1950.

    Article  PubMed  CAS  Google Scholar 

  9. Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med. 1998;4:781–785.

    Article  PubMed  CAS  Google Scholar 

  10. Zinkernagel RM. Immunology taught by viruses. Science. 1996;271:173–178.

    Article  PubMed  CAS  Google Scholar 

  11. Cole GA, Nathanson N, Prendergast RA. Requirement for theta-bearing cells in lymphocytic choriomeningitis virus-induced central nervous system disease. Nature. 1972;238:335–337.

    Article  PubMed  CAS  Google Scholar 

  12. Zinkernagel RM, Haenseler E, Leist T, Cerny A, Hengartner H, Althage A. T cell-mediated hepatitis in mice infected with lymphocytic choriomeningitis virus. Liver cell destruction by H-2 class 1-restricted virus-specific cytotoxic T cells as a physiological correlate of the 51Cr-release assay? J Exp Med. 1986;164:1075–1092.

    Article  PubMed  CAS  Google Scholar 

  13. Odermatt B, Eppler M, Leist TP, Hengartner H, Zinkernagel RM. Virus-triggered acquired immunodeficiency by cytotoxic T-cell-dependent destruction of antigen-presenting cells and lymph follicle structure. Proc Natl Acad Sci USA. 1991;88:8252–8256.

    Article  PubMed  CAS  Google Scholar 

  14. Kagi D, Seiler P, Pavlovic J et al. The roles of perforin-and Fas-dependent cytotoxicity in protection against cytopathic and noncytopathic viruses. Eur J Immunol. 1995;25:3256–3262.

    Article  PubMed  CAS  Google Scholar 

  15. Miller SD, Vanderlugt CL, Begolka WS et al. Persistent infection with Theiler’s virus leads to CNS autoimmunity via epitope spreading. Nat Med. 1997;3:1133–1136.

    Article  PubMed  CAS  Google Scholar 

  16. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol. 1991;9:271–296.

    Article  PubMed  CAS  Google Scholar 

  17. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature. 1998;392:245–252.

    Article  PubMed  CAS  Google Scholar 

  18. Moll H. Epidermal Langerhans cells are critical for immunoregulation of cutaneous leishmaniasis. Immunol Today 1993;14:383–387.

    Article  PubMed  CAS  Google Scholar 

  19. Spira AI, Marx PA, Patterson BK et al. Cellular targets of infection and route of viral dissemination after an intravaginal inoculation of simian immunodeficiency virus into rhesus macaques. J Exp Med. 1996;183:215–225.

    Article  PubMed  CAS  Google Scholar 

  20. Masurier C, Salomon B, Guettari N et al. Dendritic cells route human immunodeficiency virus to lymph nodes after vaginal or intravenous administration to mice. J Virol. 1998;72:7822–7829.

    PubMed  CAS  Google Scholar 

  21. Kimber I, Cumberbatch M. Stimulation of Langerhans cell migration by tumor necrosis factor alpha (TNF-alpha).J Invest Dermatol. 1992;99:48–50S.

    Article  Google Scholar 

  22. Roake JA, Rao AS, Morris PJ, Larsen CP, Hankins DF, Austyn JM. Systemic lipopolysaccharide recruits dendritic cell progenitors to nonlymphoid tissues. Transplantation, 1995;59:1319–1324.

    PubMed  CAS  Google Scholar 

  23. DeSmedt T, Pajak B, Muraille E et al. Regulation of dendritic cell numbers and maturation by lipopolysaccharide in vivo. J Exp Med. 1996;184:1413–1424.

    Article  CAS  Google Scholar 

  24. Ehl S, Hombach J, Aichele P et al. Viral and bacterial infections interfere with peripheral tolerance induction and activate CD8+ T cells to cause immunopathology. J Exp Med. 1998;187:763–774.

    Article  PubMed  CAS  Google Scholar 

  25. Ludewig B, Odermatt B, Landmann S, Hengartner H, Zinkernagel RM. Dendritic cells induce autoimmune diabetes and maintain disease via de novoformation of local lymphoid tissue. J Exp Med. 1998;188:1493–1501.

    Article  PubMed  CAS  Google Scholar 

  26. Ludewig B, Ehl S, Karrer U, Odermatt B, Hengartner H, Zinkernagel RM. Dendritic cells efficiently induce protective antiviral immunity. J Virol. 1998;72:3812–3818.

    PubMed  CAS  Google Scholar 

  27. Carbone FR, Kurts C, Bennett SR, Miller JF, Heath WR. Cross-presentation: a general mechanism for CTL immunity and tolerance. Immunol Today. 1998;19:368–3673.

    Article  PubMed  CAS  Google Scholar 

  28. Cella M, Engering A, Pinet V, Pieters J, Lanzavecchia A. Inflammatory stimuli induce accumulation of MHC class II complexes on dendritic cells. Nature. 1997;388:782–787.

    Article  PubMed  CAS  Google Scholar 

  29. Albert ML, Sauter B, Bhardwaj N. Dendritic cells acquire antigen from apoptotic cells and induce class I-restricted CTLs. Nature. 1998;392:86–89.

    Article  PubMed  CAS  Google Scholar 

  30. Ohashi PS, Oehen S, Aichele P et al. Induction of diabetes is influenced by the infectious virus and local expression of MHC class I and tumor necrosis factor-α. J. Immunol. 1993;150:5185–5194.

    PubMed  CAS  Google Scholar 

  31. Higuchi Y, Herrera P, Muniesa P et al. Expression of a tumor necrosis factor alpha transgene in murine pancreatic beta cells results in severe and permanent insulitis without evolution towards diabetes. J Exp Med. 1992;176:1719–1731.

    Article  PubMed  CAS  Google Scholar 

  32. Von Herrath MG, Allison J, Miller JF, Oldstone MB. Focal expression of interleukin-2 does not break unresponsiveness to’ self (viral) antigen expressed in beta cells but enhances development of autoimmune disease (diabetes) after initiation of an anti-self immune response. J Clin Invest. 1995;95:477–485.

    Article  Google Scholar 

  33. Harlan DM, Hengartner H, Huang ML et alMice expressing both B7–1 and viral glycoprotein on pancreatic beta cells along with glycoprotein-specific transgenic T cells develop diabetes due to a breakdown of T-lymphocyte unresponsiveness. Proc Natl Acad Sci USA. 1994;91:3137–3141.

    Article  Google Scholar 

  34. Melief MJ, Hoijer MA, Van Paassen HC, Hazenberg MP. Presence of bacterial flora-derived antigen in synovial tissue macrophages and dendritic cells. Br J Rheumatol. 1995;34:1112–1116.

    Article  PubMed  CAS  Google Scholar 

  35. Kabel PJ, Voorbij HA, de Haan-Meulman M, Pals ST, Drexhage HA. High endothelial venules present in lymphoid cell accumulations in thyroids affected by autoimmune disease: a study in men and BB rats of functional activity and development. J Clin Endocrinol Metab. 1989;68:744–751.

    Article  PubMed  CAS  Google Scholar 

  36. Jansen A, Voorbij HA, Jeucken PH, Bruining GJ, Hooijkaas H, Drexhage HA. An immunohisto-chemical study on organized lymphoid cell infiltrates in fetal and neonatal pancreases. A comparison with similar infiltrates found in the pancreas of a diabetic infant. Autoimmunity. 1993;15:31–38.

    Article  PubMed  CAS  Google Scholar 

  37. Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA. Insulitis in transgenic mice expressing tumor necrosis factor beta (lymphotoxin) in the pancreas. Proc Natl Acad Sci USA. 1992;89:10036–10040.

    Article  PubMed  CAS  Google Scholar 

  38. Picarella DE, Kratz A, Li CB, Ruddle NH, Flavell RA. Transgenic tumor necrosis factor (TNF)-alpha production in pancreatic islets leads to insulitis, not diabetes. Distinct patterns of inflammation in TNF-alpha and TNF-beta transgenic mice. J Immunol. 1993;150:4136–4150.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Ludewig, B., Aichele, P., Zinkernagel, R.M., Hengartner, H. (2000). Mechanisms of virus-induced autoimmune disease. In: Manns, M.P., Paumgartner, G., Leuschner, U. (eds) Immunology and Liver. Falk Symposium, vol 114. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-4000-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-4000-3_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5768-4

  • Online ISBN: 978-94-011-4000-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics