Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 182))

  • 134 Accesses

Abstract

Calcium (Ca2+) channels in the heart are controlled by adrenergic neurotransmitters through adenosine 3′5′-cyclic monophosphate (cAMP)-mediated phosphorylation of the channel [1]. In biochemical studies, cardiac Na+ channels were also seen to undergo phosphorylation by cAMP, thereby suggesting the regulation of these channels by adrenergic neurotransmitters [2]. Although cardiac excitation and impulse transmission critically depends on the availability of voltage-gated Na+ channels, there is a paucity of information on effects of catecholamines or cAMP on the fast Na+ system [3,4] and available results are inconsistent.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kameyama M, Hoffmann F, Trautwein W. On the mechanism of beta-adrenergic regulation of the Ca channel in guinea pig heart. Pflügers Arch 1985;405:285–93.

    Article  PubMed  CAS  Google Scholar 

  2. Catterall WA. Cellular and molecular biology of voltage-gated sodium channels. Physiol Rev 1992;72:s15–s48.

    PubMed  CAS  Google Scholar 

  3. Ono K, Kiyosue T, Arita M. Isoproterenol, DBcAMP, and forskolin inhibit cardiac sodium current. Am J Physiol 1989;256 (Cell Physiol 25):C1131–7.

    PubMed  CAS  Google Scholar 

  4. Ono K, Fozzard HA, Hanck DA. Mechanism of cAMP-dependent modulation of cardiac sodium current kinetics. Circ Res 1993;72:807–15.

    Article  PubMed  CAS  Google Scholar 

  5. Hill JL, Gettes LS. Effect of acute coronary artery occlusion on local myocardial extracellular K+ activity in swine. Circulation 1980;61:768–78.

    Article  PubMed  CAS  Google Scholar 

  6. Hirche HJ, Franz CH, Bös L, Bissig R, Scharmann M. Myocardial extracellular K+ and H+ increase and noradrenaline release as possible cause of early arrhythmias following acute coronary artery occlusion. J Mol Cell Cardiol 1980;12:579–93.

    Article  PubMed  CAS  Google Scholar 

  7. Schömig A. Increase of cardiac and systemic catecholamines in myocardial ischemia. In: Brachmann J, Schömig A, editors. Adrenergic System and Ventricular Arrhythmias in Myocardial Infarction. London: Springer-Verlag, 1989; 61–77.

    Chapter  Google Scholar 

  8. Marty A, Neher E. Tight-seal whole-cell recording. In: Neher E, Sakmann B, editors. Single-channel recording. New York/London: Plenum Press, 1983: 107–21.

    Chapter  Google Scholar 

  9. Arita M, Kiyosue T, Aomine M, Imanishi S. Nature of “residual fast channel” dependent action potentials and slow conduction in guinea pig ventricular muscle and its modification by isoproterenol. Am J Cardiol 1983;51:1433–40.

    Article  PubMed  CAS  Google Scholar 

  10. Cheng YN, Aomine M, Arita M. Acetylcholine reverses isoproterenol-induced depression of Vmax in residual Na channel dependent action potentials of guinea-pig ventricular muscles. J Mol Cell Cardiol 1991;23:537–49.

    Article  PubMed  CAS  Google Scholar 

  11. Hisatome I, Kiyosue T, Imanishi S, Arita M. Isoproterenol inhibits residual fast channel via stimulation of β-adrenoceptors in guinea pig ventricular muscle. J Mol Cell Cardiol 1985;17:657–65

    Article  PubMed  CAS  Google Scholar 

  12. Soejima M, Noma A. Mode of regulation of the Achsensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflügers Arch 1984;400:424–31.

    Article  PubMed  CAS  Google Scholar 

  13. Muramatsu H, Kiyosue T, Arita M. Intracellular perfusion of cyclic AMP decreases the sodium current of guinea pig ventricular myocytes (abstract). J Am Coll Cardiol 1990;16:144A.

    Google Scholar 

  14. Muramatsu H, Kiyosue T, Arita M, Ishikawa T, Hidaka H. Modification of cardiac sodium current by intracellular application of cyclic AMP. Pflügers Arch 1994;426:146–54.

    Article  PubMed  CAS  Google Scholar 

  15. Chijiwa T, Mashima A, Hagiwara M et al. Inhibition of forskolin-induced phosphorylation by a newly synthesized selective inhibitor of cyclic AMP-dependent protein kinase, N-[2-(p-bromocinnamylamino) ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D pheochromacytoma cells. J Biol Chem 1990;265:5627–72.

    Google Scholar 

  16. Brown AM, Lee KS, Powell T. Sodium current in single rat heart muscle cells. J Physiol (Lond) 1981;318:479–500.

    CAS  Google Scholar 

  17. Schubert B, VanDongen MJ, Kirsch GE, Brown AM. β-adrenergic inhibition of cardiac sodium channels by dual G-protein pathways. Science 1989;245:516–9.

    Article  PubMed  CAS  Google Scholar 

  18. Gintant GA, Liu DW. β-adrenergic modulation of fast inward sodium current in canine myocardium: syncytial preparations versus isolated myocytes. Circ Res 1992;70:844–50.

    Article  PubMed  CAS  Google Scholar 

  19. Kirstein M, Eickhorn R, Langenfield H, Kochsiek K, Antoni H. Influence of beta-adrenergic stimulation on the fast sodium current in intact rat papillary muscle. Basic Res Cardiol 1991;86:441–8.

    Article  PubMed  CAS  Google Scholar 

  20. Murray KT, Snyders DS, Bennet PB. Na channel blockade by cyclic AMP and other 6-aminopurines in neonatal rat heart. J Memb Biol 1990;119:163–70.

    Google Scholar 

  21. Wendt DJ, Stammer CF, Grant AO. Perforated patch recording of cardiac sodium current without time-dependent changes in kinetics: An approach to the study of hormonal channel regulation (abstract). Circulation 1992;86(Suppl I):I–7.

    Google Scholar 

  22. Herzig JW, Kohlhardt M. Na channel blockade by cyclic AMP and other 6-aminopurines in neonatal rat heart. J Memb Biol 1991;119:163–70.

    Article  CAS  Google Scholar 

  23. Windisch H, Tritthart HA. Isoproterenol, norepinephrine and phosphodiesterase inhibitors are blockers of the depressed fast Na+-system in ventricular muscle fibers. J Mol Cell Cardiol 1982;14:431–4.

    Article  PubMed  CAS  Google Scholar 

  24. Schubert B, Bodewei R, Hering S, Wollenberger A. Cell attached patch clamp measurement of macroscopic rapid inward sodium current in cultured heart cell reaggregate. J Mol Cell Cardiol 1987;19:1129–39.

    Article  PubMed  CAS  Google Scholar 

  25. Matsuda JJ, Lee H, Shibata EF. Enhancement of rabbit cardiac sodium channels by β-adrenergic stimulation. Circ Res 1992;70:199–207.

    Article  PubMed  CAS  Google Scholar 

  26. Tytgat J, Vereecke J, Carmeliet E. A combined study of sodium current and T-type calcium current in isolated cardiac cells. Pflügers Arch 1990;417:142–8.

    Article  PubMed  CAS  Google Scholar 

  27. Arita M, Kiyosue T. Modification of “depressed fast channel dependent slow conduction” by lidocaine and verapamil in the presence or absence of catecholamines: Evidence for alteration of preferential ionic channels for slow conduction. Jpn Circ J 1983;47:68–81.

    Article  PubMed  CAS  Google Scholar 

  28. Kagiyama Y, Hill JL, Gettes LS. Interaction of acidosis and increased extracellular potassium on action potential characteristics and conduction in guinea pig ventricular muscle. Circ Res 1982;51:614–23

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Arita, M., Muramatsu, H., Ono, K., Kiyosue, T. (1996). β-adrenergic regulation of cardiac Na+ channel. In: Morad, M., Ebashi, S., Trautwein, W., Kurachi, Y. (eds) Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. Developments in Cardiovascular Medicine, vol 182. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3990-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3990-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5765-3

  • Online ISBN: 978-94-011-3990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics