Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 182))

Abstract

How voltage-gated DHP receptor controls the gating of the Ryanodine receptor in cardiac and skeletal muscle has been the central question of E-C coupling over the past two decades. Although the question remains still not fully answered, a number of biochemical, biophysical and molecular observations have furthered and focused the scientific understanding of the problem. In cardiac muscle, the general scheme that has emerged provides a primary role for transmembrane influx of Ca2+, not only in the direct activation of myofilament, but also in gating the release of intracellular Ca2+ stores [1–6].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beeler GW, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol (Lond) 1970;207–29.

    Google Scholar 

  2. Morad M, Goldman YE. Excitation-contraction in heart muscle: membrane control of development of tension. Prog Biophys Mol Biol 1973;27:257–313.

    Article  Google Scholar 

  3. Morad M, Cleemann L. Role of Ca2+ channel in development of tension in heart muscle. J Mol Cell Cardiol 1987;19(6):527–53.

    Article  PubMed  CAS  Google Scholar 

  4. Barcenas-Ruiz L, Wier WG. Voltage dependence of intracellular [Ca2+]i transients in guinea-pig ventricular myocytes. Circ Res 1987;61:148–54.

    Article  PubMed  CAS  Google Scholar 

  5. Beuckelmann DJ, Wier WG. Mechanism of release of calcium from sarcoplasmic reticulum of guinea-pig cardiac cells. J Physiol (Lond) 1988;405:233–55.

    CAS  Google Scholar 

  6. Cleemann L, Morad M. Role of Ca2+ channel in cardiac excitation-contraction coupling in rat: evidence from Ca2+ transients and contraction. J Physiol (Lond) 1991;432:283–312.

    CAS  Google Scholar 

  7. Fabiato A. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J Gen Physiol 1985;85:247–89.

    Article  PubMed  CAS  Google Scholar 

  8. Cannell MB, Berlin JR, Lederer WJ. Effect of membrane potential changes on the calcium transient in single rat cardiac cells. Science 1987;238:1419–23.

    Article  PubMed  CAS  Google Scholar 

  9. Cohen NM, Lederer WJ. Changes in the calcium current of rat heart ventricular myocytes during development. J Physiol (Lond) 1988;406:115–46.

    CAS  Google Scholar 

  10. Callewaert G, Cleemann L, Morad M. Epinephrine enhances Ca2+ current-regulated Ca2+ release and Ca2+ reuptake in rat ventricular myocytes. Proc Natl Acad Sci USA 1988;85:2009–13.

    Article  PubMed  CAS  Google Scholar 

  11. Näbauer M, Callewaert G, Cleemann L, Morad M. Regulation of calcium release is gated by calcium current, not gating charge, in cardiac myocytes. Science 1989;244:800–3.

    Article  PubMed  Google Scholar 

  12. Valdeolmillos M, O’Neill SC, Smith GL, Eisner DA. Calcium-induced calcium release activates contraction in intact cardiac cells. Pflugers Arch 1989;413:676–8.

    Article  PubMed  CAS  Google Scholar 

  13. Näbauer M, Morad M. Ca2+-induced Ca2+ release as examined by photolysis of caged Ca2+ in single ventricular myocytes. Am J Physiol 1990;258:C189–93.

    PubMed  Google Scholar 

  14. Niggli E, Lederer WJ. Voltage-independent calcium release in heart muscle. Science 1990;250:565–8.

    Article  PubMed  CAS  Google Scholar 

  15. Tanabe T, Beam KG, Adams BA, Niidome T, Numa S. Regions of the skeletal muscle dihydropyridine receptor critical for excitation-contraction coupling. Nature 1990;346:567–9.

    Article  PubMed  CAS  Google Scholar 

  16. Rousseau E, Ladine J, Liu QY, Meissner G. Activation of the Ca2+ release channel of skeletal muscle sarcoplasmic reticulum by caffeine and related compounds. Arch Biochem Biophys 1987;267:75–86.

    Article  Google Scholar 

  17. Rousseau E, Meissner G. Single cardiac sarcoplasmic reticulum Ca2+-release channel: activation by caffeine. Am J Physiol 1989;256:H328–33.

    PubMed  CAS  Google Scholar 

  18. Ashley RH, Williams AJ. Divalent cation activation and inhibition of single calcium release channels from sheep cardiac sarcoplasmic reticulum. J Gen Physiol 1990;85:981–1005.

    Article  Google Scholar 

  19. Beuckelmann DJ, Wier WG. Sodium-calcium exchange in guinea-pig cardiac cells: exchange current and changes in intracellular Ca2+. J Physiol (Lond) 1989;414:499–520.

    CAS  Google Scholar 

  20. Crespo LM, Grantham G J, Cannell MB. Kinetics, stoichiometry, and the role of the Na+−Ca2+ exchange mechanism in isolated cardiac myocytes. Nature 1990;618–21.

    Google Scholar 

  21. Sham JSK, Cleemann L, Morad M. Gating of the cardiac Ca2+ release channel: the role of Na+ current and Na+−Ca2+ exchange. Science 1992;255:850–3.

    Article  PubMed  CAS  Google Scholar 

  22. Sham JSK, Cleemann L, Morad M. Functional coupling of Ca2+ channels and Ryanodine receptors in cardiac myocytes. Proc Natl Acad Sci USA 1995;91:121–5.

    Article  Google Scholar 

  23. Bers DM, Christensen DM, Nguyen TX. Can Ca2+ entry via Na+−Ca2+ exchange directly activate cardiac muscle contraction? J Mol Cell Cardiol 1988;20:405–14.

    Article  PubMed  CAS  Google Scholar 

  24. Eisner DA, Lederer WJ, Vaughan-Jones RD. The control of tonic tension by membrane potential and intracellular Na+ activity in the sheep cardiac Purkinje fibre. J Physiol (Lond) 1983;335:723–43.

    CAS  Google Scholar 

  25. Eisner DA. Intracellular sodium in cardiac muscle: effects on contraction. Exp Physiol 1990;75:437–57.

    PubMed  CAS  Google Scholar 

  26. Chapman RA, Tunstall J. The interaction of sodium and calcium ions at the cell membrane and the control of contractile strength in frog atrial muscle. J Physiol (Lond) 1980;305:109–23.

    CAS  Google Scholar 

  27. Bridge JHB, Smolley JR, Spitzer KW. The relationship between charge movements associated with ICa and Ina−Ca in cardiac myocytes. Science 1990;248:376–8.

    Article  PubMed  CAS  Google Scholar 

  28. Lederer WJ, Niggli E, Hadley RW. Sodium-calcium exchange in excitable cells: fuzzy space. Science 1990;248: 83.

    Article  Google Scholar 

  29. LeBlanc N, Hume JR. Sodium current-induced release of calcium from cardiac sarcoplasmic reticulum. Science 1990;248:372–6.

    Article  PubMed  CAS  Google Scholar 

  30. Lipp P, Niggle E. Sodium current induced Ca2+ signals in isolated guinea-pig ventricular myocytes. J Physiol (Lond) 1994;474:439–46.

    CAS  Google Scholar 

  31. Bers DM. Species differences and role of Na+−Ca2+ exchange in cardiac muscle relaxation. Ann NY Acad Sci 1991;639:375–85.

    Article  PubMed  CAS  Google Scholar 

  32. Adachi-Akahane S, Cleemann L, Morad M. Cross-signaling between L-type Ca2+ channels and Ryanodine-receptors in rat ventricular myocytes. J Gen Physiol. In press.

    Google Scholar 

  33. Imagawa T, Smith JS, Coronado R, Campbell KP. Purified Ryanodine receptor from skeletal muscle sarcoplasmic reticulum is the Ca2+-permeable pore of the calcium release channel. J Biol Chem 1987;16636–43.

    Google Scholar 

  34. Hymel L, Schindler H, Inui M, Fleischer S. Reconstitution of purified cardiac muscle calcium release channel (Ryanodine receptor) in planar bilayers. Biochem Biophys Res Commun 1988;152:308–14.

    Article  PubMed  CAS  Google Scholar 

  35. Meissner G, Henderson JS. Rapid calcium release from cardiac sarcoplasmic reticulum vesicles is dependent on Ca2+ and is modulated by Mg2+, adenine nucleotide, and calmodulin. J Biol Chem 1987;262:3065–73.

    PubMed  CAS  Google Scholar 

  36. Nagasaki K, Fleischer S. Ryanodine sensitivity of the calcium release channel of sarcoplasmic reticulum. Cell Calcium 1988;9:1–7.

    Article  PubMed  CAS  Google Scholar 

  37. Stisapesan R, Williams AJ. Mechanism of caffeine activation of single calcium-release channels of sheep cardiac sarcoplasmic reticulum. J Physiol (Lond) 1990;423:425–39.

    Google Scholar 

  38. Kawano S, Coronado R. Ca2+ dependence of Ca2+ release channel activity in the sarcoplasmic reticulum of cardiac and skeletal muscle. Biophys J 1991;59:600a.

    Google Scholar 

  39. Hess P, Lansman JB, Tsien RW. Calcium channel selectivity for divalent and monovalent cations. Voltage and concentration dependence of single channel current in ventricular heart cells. J Gen Physiol 1986;88:293–319.

    Article  PubMed  CAS  Google Scholar 

  40. Morad M, Davies MW, Kaplan JH, Lux HD. Inactivation and block of calcium channels by photo-released Ca2+ in dorsal root ganglion neurons. Science 1988;241:842–4.

    Article  PubMed  CAS  Google Scholar 

  41. Bers DM. Excitation-contraction coupling and cardiac contractile force. Boston: Kluwer Academic Publishers, 1991.

    Google Scholar 

  42. Lamb GD. DHP receptors and excitation-contraction coupling. J Muse Res Cell Motil 1992;13:394–405.

    Article  CAS  Google Scholar 

  43. Gyorke S, Fill M. Ryanodine receptor adaptation: control mechanism for Ca2+-induced Ca2+ release in heart. Science 1993;260:807–9.

    Article  PubMed  CAS  Google Scholar 

  44. Lamb GD, Fryer MW, Stephenson DG. Ca2+-induced Ca2+ release in response to flash photolysis. Science 1994;263:986–7.

    Article  PubMed  Google Scholar 

  45. Lamb GD, Stephenson DG. Activation of Ryanodine receptor by flash photolysis of caged Ca2+. Biophys J 1994;68:946–8.

    Article  Google Scholar 

  46. Näbauer M, Morad M. Modulation of contraction by intracellular Na+ via Na+−Ca2+ exchange in single shark (Squalus acanthias) ventricular myocytes. J Physiol (Lond) 1992;457:627–37.

    Google Scholar 

  47. Stern MD, Lakatta E. Excitation-contraction coupling in the heart: the state of the question. FASEB J 1992;6:3092–100.

    PubMed  CAS  Google Scholar 

  48. Hilgemann DW, Noble D. Excitation-contraction coupling and extracellular calcium transients in rabbit atrium: reconstruction of basic cellular mechanisms. Proc R Soc Lond 1987;230:163–205.

    Article  PubMed  CAS  Google Scholar 

  49. Earm YE, Noble D. A model of the single atrial cell: relation between calcium current and calcium release. Proc R Soc Lond 1994;B240:83–96.

    Google Scholar 

  50. Balke CW, Wier WG. Ryanodine does not affect calcium current in guinea-pig ventricular myocytes in which Ca2+ is buffered. Circ Res 1991;68:897–902.

    Article  PubMed  CAS  Google Scholar 

  51. Wibo M, Bravo G, Godfraind T. Postnatal maturation of excitation-contraction coupling in rat ventricle in relation to the subcellular localization and surface density of 1,4–dihydropyridine and Ryanodine receptors. Circ Res 1991;68:662–73.

    Article  PubMed  CAS  Google Scholar 

  52. Lopez-Lopez JR, Shacklock P, Balky CW, Wier G. Local Ca2+ transients triggered by single Ca2+ channels in cardiac myocytes. Science. In press.

    Google Scholar 

  53. Cheng H, Lederer WJ, Cannell MB. Calcium sparks: elementary events underlying excitation-contraction coupling in heart muscle. Science 1993;262:740–4.

    Article  PubMed  CAS  Google Scholar 

  54. Cannel MB, Lederer WJ. Spacial non-uniformities in [Ca2+]i during excitation-contraction coupling in cardiac myocytes. Biophys J 1994;67:1942–56.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Morad, M. (1996). Signaling of calcium release in cardiac muscle. In: Morad, M., Ebashi, S., Trautwein, W., Kurachi, Y. (eds) Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. Developments in Cardiovascular Medicine, vol 182. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3990-8_32

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3990-8_32

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5765-3

  • Online ISBN: 978-94-011-3990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics