Skip to main content

Transient inward current and triggered activity

  • Chapter
  • 133 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 182))

Abstract

Afterdepolarizations represent a unique mechanism of abnormal impulse formations in which they are induced by initiating or triggering action potential. There are two types of afterdepolarizations, early and delayed afterdepolarizations. Early afterdepolarizations (EADs) occur during the course of preceding action potential repolarization, while delayed afterdepolarizations (DADs) develop after complete repolarization. DADs, which also have different terms such as transient depolarization, oscillatory afterpotential and so on, are damped membrane oscillations with amplitudes either less than reaching threshold or large enough to reach threshold. In the former case, DADs may appear as several membrane oscillations to subside gradually or may become large enough to propagate as subthreshold depolarization. In the latter case, they reach threshold to induce either a single spontaneous excitation, continuous rhythmic activity or runs of tachycardia.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cranefield PF. Action potentials, afterpotential, and arrhythmias. Circ Res 1977;41:414–23.

    Article  Google Scholar 

  2. Ferner GR. Digitalis arrhythmias, role of oscillatory afterpotential. Prog Cardiovasc Dis 1977;19:459–74.

    Article  Google Scholar 

  3. Ferner GL, Saunders JH, Mendez C. A cellular mechanism for the generation of ventricular arrhythmias by ace-tylstrophanthidin. Circ Res 1973;32:600–9.

    Article  Google Scholar 

  4. Davis LD. Effects of changes in cycle length on diastolic depolarization produced by ouabain in canine Purkinje fibers. Circ Res 1973;32:206–14.

    Article  PubMed  CAS  Google Scholar 

  5. Rosen MR, Gelband HB, Hoffman BF. Correlation between effects of ouabain on the canine electrocardiogram and transmembrane potentials of isolated Purkinje fibers. Circulation 1973;47:65–72.

    Article  PubMed  CAS  Google Scholar 

  6. Eisner DA, Lederer WJ. Inotropic and arrhythmogenic effects of potassium depleted solutions on mammalian cardiac muscle. J Physiol (Lond) 1979;294:255–77.

    CAS  Google Scholar 

  7. Hiraoka M, Okamoto Y, Sano T. Oscillatory afterpotential in dog ventricular muscle fibers. Circ Res 1981;48:510–8.

    Article  PubMed  CAS  Google Scholar 

  8. Witt AL, Rosen MR. Afterdepolarizations and triggered activity. In: Fozzard HA, Haber H, Jennings RB, Katz AM, Morgan HE, editors The Heart and Cardiovascular System. New York: Raven Press, 1986:1449–90.

    Google Scholar 

  9. Cranefield PF, Arlonson RS. Cardiac Arrhythmias: The Role of Triggered Activity and Other Mechanisms. New York: Futura Publ. Co. Mount Kisco, 1988:91–292.

    Google Scholar 

  10. Deitmer JW, Ellis D. The intracellular sodium activity of cardiac Purkinje fibres during inhibition and re-activation of the Na-K pump. J Physiol (Lond) 1978;284:241–59.

    CAS  Google Scholar 

  11. Lee CO, Dagostino M. Effect of strophanthidin on intracellular Na ion activity and twitch tension in constantly driven canine cardiac Purkinje fibers. Biophys J 1982;40:185–98.

    Article  PubMed  CAS  Google Scholar 

  12. Wasserstrom JA, Schwartz DJ, Fozzard HA. Relation between intracellular sodium and twitch tension in sheep cardiac Purkinje strands exposed to cardiac glycosides. Circ Res 1983;52:697–705.

    Article  PubMed  CAS  Google Scholar 

  13. Sheu S-S, Fozzard HA. Transmembrane Na+ and Ca2+ electrochemical gradients in cardiac muscle and their relationship to force development. J Gen Physiol 1982;80:325–51.

    Article  PubMed  CAS  Google Scholar 

  14. Ferrier GR. The effects of tension on acetylstrophanthid-in-induced transient depolarization and after contractions in canine myocardial and Purkinje tissues. Circ Res 1976;38:156–62.

    Article  PubMed  CAS  Google Scholar 

  15. Kass RS, Tsien RW. Fluctuations in membrane current driven by intracellular calcium in cardiac Purkinje fibers. Biophys J 1982;38:259–69.

    Article  PubMed  CAS  Google Scholar 

  16. Sutko JL, Kenyon JL. Ryanodine modification of cardiac muscle responses to potassium-free solutions. Evidence for inhibition of sarcoplasmic reticulum calcium release. J Gen Physiol 1983;82:385–404.

    Article  PubMed  CAS  Google Scholar 

  17. El-sherif N, Gough WB, Zeiler RH, Mehra R. Triggered ventricular rhythms in 1-day-old myocardial infarction in the dog. Circ Res 1983;52:566–79.

    Article  PubMed  CAS  Google Scholar 

  18. Ferrier GR, Moffat MP, Lukas A. Possible mechanism of ventricular arrhythmias elicited by ischemia followed by reperfusion: studies on isolated canine ventricular tissues. Circ Res 1985;56:184–94.

    Article  PubMed  CAS  Google Scholar 

  19. Coetzee WA, Opie LH. Effects of components of ischemia and metabolic inhibition on delayed afterdepolari-zations in guinea pig papillary muscle. Circ Res 1987;61:157–65.

    Article  PubMed  CAS  Google Scholar 

  20. Hayashi H, Ponnamblam C, McDonald TF. Arrhythmic activity in reoxygenated guinea-pig papillary muscles and ventricular cells. Circ Res 1987;61:124–33.

    Article  PubMed  CAS  Google Scholar 

  21. Kimura S, Bassett AL, Gaide MS, Kozlovskis PL, Myerburg RJ. Regional changes in intracellular potassium and sodium activity after healing of experimental myocardial infarction in cats. Circ Res 1986;58:202–8.

    Article  PubMed  CAS  Google Scholar 

  22. Dresdner KP, Kline RP, Witt AL. Intracellular K+ and intracellular Na+ activity, and maximum diastolic potential of canine subendocardial Purkinje cells from one-day-old infarcts. Circ Res 1987;60:122–32.

    Article  PubMed  CAS  Google Scholar 

  23. Arnsdorf MF, Sawicki GJ. The effects of lysophosphatid-ylcholine, a toxic metabolite of ischemia, on the components of cardiac excitability in sheep Purkinje fibers. Circ Res 1981;49:16–30.

    Article  PubMed  CAS  Google Scholar 

  24. Pogwizd SM, Onufer JR, Kramer JB, Sobel BE, Corr PB. Induction of delayed afterdepolarizations and triggered activity in canine Purkinje fibers by lysophosphoglycer-ides. Circ Res 1986;59:416–26.

    Article  PubMed  CAS  Google Scholar 

  25. Matsuura H, Shattock M. Membrane potential fluctuations and transient inward currents induced by reactive oxygen intermediates in isolated rabbit ventricular cells. Circ Res 1991;68:319–29.

    Article  PubMed  CAS  Google Scholar 

  26. Lederer WJ, Tsien RW. Transient inward current underlying arrhythmogenic effects of cardiotonic steroids in Purkinje fibres. J Physiol (Lond) 1976;263:73–100.

    CAS  Google Scholar 

  27. Kass RS, Lederer WJ, Tsien RW, Weingart R. Role of calcium ions in transient inward currents and aftercontrac-tions induced by strophanthidin in cardiac Purkinje fibres. J Physiol (Lond) 1978;281:187–208.

    CAS  Google Scholar 

  28. Kass RS, Tsien RW, Weingart R. Ionic basis of transient inward current induced by strophanthidin in cardiac Purkinje fibres. J Physiol 1978;281:209–26.

    PubMed  CAS  Google Scholar 

  29. Orchard CH, Eisner DA, Allen DG. Oscillation of intracellular Ca2+ in mammalian cardiac muscle. Nature 1983;304:735–8.

    Article  PubMed  CAS  Google Scholar 

  30. Wier WG, Hess P. Excitation-contraction coupling in cardiac Purkinje fibers. Effects of cardiotonic steroids on intracellular [Ca2+] transient, membrane potential, and contraction. J Gen Physiol 1984;83:395–415.

    Article  PubMed  CAS  Google Scholar 

  31. Matsuda H, Noma A, Kurachi Y, Irisawa H. Transient depolarization and spontaneous fluctuations in isolated single cells from guinea pig ventricles. Calcium-mediated membrane potential fluctuations. Circ Res 1982;51:142–51.

    Article  PubMed  CAS  Google Scholar 

  32. Marban E, Robinson SW, Wier WG. Mechanisms of arrhythmogenic delayed and early afterdepolarizations in ferret ventricular muscle. J Clin Invest 1986;78:1185–92.

    Article  PubMed  CAS  Google Scholar 

  33. Valdeomillos M, Eisner DA. The effects of ryanodine on calcium-overloaded sheep cardiac Purkinje fibers. Circ Res 1985;56:452–6.

    Article  Google Scholar 

  34. Hirano Y, Hiraoka M. Changes in K+ currents induced by Ba2+ in guinea-pig ventricular muscles. Am J Physiol 1986;251:H24–H33.

    PubMed  CAS  Google Scholar 

  35. Hiraoka M, Hirano Y, Kawano S, Fan Z, Sawanobori T. Amantadine-induced afterpotential and automaticity in guinea pig ventricular myocytes. Circ Res 1989;65:880–93.

    Article  PubMed  CAS  Google Scholar 

  36. Hirano Y, Hiraoka M. Barium-induced automatic activity in isolated ventricular myocytes from guinea-pig hearts. J Physiol (Lond) 1988;395:455–72.

    CAS  Google Scholar 

  37. Colquhoun D, Neher E, Reuter H, Stevens CF. Inward current channels activated by intracellular Ca in cultured cardiac cells. Nature 1981;294:752–4.

    Article  PubMed  CAS  Google Scholar 

  38. Ehara T, Noma A, Ono K. Calcium-activated nonselective cation channel in ventricular cells isolated from adult guinea-pig hearts. J Physiol (Lond) 1988;403:117–33.

    CAS  Google Scholar 

  39. Eisner DA, Lederer WJ. Na-Ca exchange: stoichiometry and electrogenicity. Am J Physiol 1985;248:C189–C202.

    PubMed  CAS  Google Scholar 

  40. Arlock P, Katzung BG. Effects of sodium substitutes on transient inward current and tension in guinea-pig and ferret papillary muscle. J Physiol (Lond) 1985;352:105–20.

    Google Scholar 

  41. Brown HF, Noble D, Noble SJ, Taupignon AI. Relationship between the transient inward current and slow inward currents in the sino-atrial node of the rabbit. J Physiol (Lond) 1986;370:299–315.

    CAS  Google Scholar 

  42. Lipp P, Pott L. Transient inward current in guinea-pig atrial myocytes reflects a change of sodium-calcium exchange current. J Physiol 1988;397:601–30.

    PubMed  CAS  Google Scholar 

  43. Clusin WT, Fischmeister R, DeHaan RL. Caffeine-induced current in embryonic heart cells: time course and voltage dependence. Am J Physiol 1983;245:H528–H32.

    PubMed  CAS  Google Scholar 

  44. Noble D. The surprising heart: a review of recent progress in cardiac electrophysiology. J Physiol (Lond) 1984;353:1–50.

    CAS  Google Scholar 

  45. Tseng G, Wit AL. Effect of reducing [Na+]o on catecholamine-induced delayed afterdepolarizations in atrial cells. Am J Physiol 1987;253:H115–H25.

    PubMed  CAS  Google Scholar 

  46. Cannell MB, Lederer WJ. The arrhythmogenic current ITI in the absence of electrogenic sodium-calcium exchange in sheep cardiac Purkinje fibres. J Physiol (Lond) 1986;374:201–19.

    CAS  Google Scholar 

  47. Han X, Ferrier GR. Ionic mechanisms of transient inward current in the absence of Na+−Ca2+ exchange in rabbit cardiac Purkinje fibres. J Physiol (Lond) 1992;456:19–38.

    CAS  Google Scholar 

  48. Giles W, Shimoni Y. Comparison of sodium-calcium exchanger and transient inward currents in single cells from rabbit ventricle, J Physiol 1989;417:465–81.

    PubMed  CAS  Google Scholar 

  49. Hiraoka M, Kawano S, Kinoshita H. Contribution of Ca2+-influx to generation of the transient inward current in guinea-pig ventricular myocytes. Jpn J Physiol 1987;37:479–96.

    Article  PubMed  CAS  Google Scholar 

  50. Verdonck L, Borgers M, Verdonck F. Inhibition of sodium and calcium overload pathology in the myocardium: a new cytoprotective principle. Cardiovasc Res 1993;27:349–57.

    Article  PubMed  CAS  Google Scholar 

  51. Leyssens A, Carmeliet E. Block of the transient inward current by R56865 in guinea-pig ventricular myocytes. Eur J Pharmacol 1991;196:43–51.

    Article  PubMed  CAS  Google Scholar 

  52. Ichikawa H, Hearse DJ, Coetzee A. Effects of R-56865 on transient inward current, Na+−Ca2+ exchange, and Ca2+ release from SR in cardiac myocytes. Am J Physiol 1994;266:H511–H20.

    PubMed  CAS  Google Scholar 

  53. Song Y, Thedford S, Lehman BB, Belardinelli L. Aden-osine-sensitive afterdepolarizations and triggered activity in guinea pig ventricular myocytes. Circ Res 1992;70:743–53.

    Article  PubMed  CAS  Google Scholar 

  54. Lehman BB, Beraldinelli L, West GA, Bern RM, Dimarco JP. Adenosine-sensitive ventricular tachycardia: Evidence suggesting cyclic AMP-mediated triggered activity. Circulation 1986;74:270–80.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Hiraoka, M., Sawanobori, T., Kawano, S., Hirano, Y. (1996). Transient inward current and triggered activity. In: Morad, M., Ebashi, S., Trautwein, W., Kurachi, Y. (eds) Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. Developments in Cardiovascular Medicine, vol 182. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3990-8_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3990-8_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5765-3

  • Online ISBN: 978-94-011-3990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics