Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 182))

  • 132 Accesses

Abstract

To study the effects of lipophilic substances such as fatty acids on ion channel function, it is necessary to consider the biological structure and properties of the membrane lipid bilayer. In Singer and Nicholson’s fluid mosaic model of biological membranes, globular proteins are embedded to varying degrees into the fluid-like phospholipid bilayer, a basic structural unit of the membrane. The interaction of proteins with the lipid bilayer is via hydrophobic and electrostatic forces which determine the strength of attachment to the membrane. Therefore, lipid bilayers of biomembranes serve as a medium in which proteins work and interact with each other. Membrane lipids also serve important functions such as source and generation of intracellular second messengers, participation in biosynthetic pathways, and act as allos-teric effectors in the regulation of enzyme activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kim D, Clapham DE. Potassium channels in cardiac cells activated by arachidonic acid and phospholipids. Science 1989;244:1174–6.

    Article  PubMed  CAS  Google Scholar 

  2. Kim D, Duff RA. Regulation of K+ channels in cardiac myocytes by free fatty acids. Circ Res 1990;67:1040–6.

    Article  PubMed  CAS  Google Scholar 

  3. Wallert MA, Ackerman MJ, Kim D, Clapham DE. Two novel cardiac atrial K+ channels, IK-AA and IK-PC. J Gen Physiol 1991;98:921–39.

    Article  PubMed  CAS  Google Scholar 

  4. Ordway RW, Walsh JV Jr, Singer JJ. Arachidonic acid and other fatty acids directly activate potassium channels in smooth muscle cells. Science 1991;244:1176–9.

    Article  Google Scholar 

  5. Kim D, Sladek CD, Aguado-Velasco C, Mathiason JR. Arachidonic acid activation of a new family of K+ channels in cultured rat neuronal cells. J Physiol (Lond) 1995;484.3:643–60.

    Google Scholar 

  6. Kim D. A mechanosensitive K+ channel in heart cells. Activation by arachidonic acid. J Gen Physiol 1992;100:1021–40.

    Article  PubMed  CAS  Google Scholar 

  7. Kirber MT, Ordway RW, Clapp LH, Walsh JV Jr, Singer JJ. Both membrane stretch and fatty acids directly activate large conductance Ca2+-activated K+ channels in vascular smooth muscle cells. Fed Eur Biochem Soc 1992;297:24–8.

    Article  CAS  Google Scholar 

  8. Piomelli D, Volterra A, Dale N et al. Lipoxygenase metabolites of arachidonic acid as second messengers for presynaptic inhibition of Aplasia sensory cells. Nature 1987;328:38–43.

    Article  PubMed  CAS  Google Scholar 

  9. Vandorpe DH, Morris CE. Stretch activation of the Apy-sia S-channel. J Memb Biol 1992;127:205–14.

    Article  CAS  Google Scholar 

  10. Sukharev SI, Martinac B, Arshavsky VY, Kung C. Two types of mechanosensitive channels in the Escherichia coli cell envelope: solubilization and functional reconstitution. Biophys J 1993;65:177–83.

    Article  PubMed  CAS  Google Scholar 

  11. Benndorf K, Friedrich M, Hirche HJ. Anoxia regulated K channels in isolated heart cells of the guinea pig. Pflugers Arch 1991;419:108–10.

    Article  PubMed  CAS  Google Scholar 

  12. Kim D, Lewis LL, Graziadei L, Neer EJ, Bar-Sagi D, Clapham DE. G protein βγ-activate the cardiac muscarinic K channel via phospholipase A2. Nature 1989;337:557–60.

    Article  PubMed  CAS  Google Scholar 

  13. Kurachi Y, Ito H, Sugimoto T, Shimizu T, Miki I, Ui M. Arachidonic acid metabolites as intracellular modulators of the G protein-gated cardiac K channel. Nature 1989;337:555–7.

    Article  PubMed  CAS  Google Scholar 

  14. Scherer RW, Lo F, Breitwieser GE. Leukotriene C4 modulation of muscarinic K current activation in bullfrog atrial myocytes. J Gen Physiol 1993;102:125–41.

    Article  PubMed  CAS  Google Scholar 

  15. Nakajima T, Sugimoto T, Kurachi Y. Platelet activating factor activates cardiac GK via arachidonic acid metabolites FEBS lett 1991;289:239–43.

    Article  PubMed  CAS  Google Scholar 

  16. Kurachi Y, Ito H, Sugimoto T, Shimizu T, Miki I, Ui M. α-adrenergic activation of the muscarinic K channel is mediated by arachidonciac id metabolites. Pflugers Arch 1989;414:102–104.

    Article  PubMed  CAS  Google Scholar 

  17. Tung RT, Kurachi Y. On the mechanism of nucleotide diphosphate activation of the ATP-sensitive K channel in ventricular cell of guinea pig. J Physiol (Lond). 1991;437:239–56.

    CAS  Google Scholar 

  18. Ito H, Tung RT, Sugimoto T et al. On the mechanism of G protein bg subunit activation of the muscarinic K channel in guinea pig atrial cell membrane. J Gen Physiol 1992;99:961–83.

    Article  PubMed  CAS  Google Scholar 

  19. Kiyosue T, Arita M. Effects of lysophosphatidylcholine on resting potassium conductance of isolated guinea pig ventricular cells. Pflugers Arch 1986;406:296–302.

    Article  PubMed  CAS  Google Scholar 

  20. Cohen CJ, Bale T, Leibowitz MD. Calcium agonist and antagonist effects of fatty acids in guinea pig atrial myocytes. Biophys J 1990;57:307a.

    Google Scholar 

  21. Huang JM, Xian H, Bacaner M. Long chain fatty acids activate calcium channels in ventricular myocytes. Proc Natl Acad Sci 1992;89:6452–6.

    Article  PubMed  CAS  Google Scholar 

  22. Hallaq H, Smith TW, Leaf A. Modulation of dihydropyri-dine-sensitive calcium channels in heart cells by fish oil fatty acids. Proc Natl Acad Sci 1992;89:1760–4.

    Article  PubMed  CAS  Google Scholar 

  23. Shimada T, Somlyo AP. Modulation of voltage-dependent Ca2+ channel current by arachidonic acid and other long-chain fatty acids in rabbit intestinal smooth muscle. J Gen Physiol 1992;100:27–44.

    Article  PubMed  CAS  Google Scholar 

  24. Linden DJ, Routtenberg A. Cis-fatty acids which activate protein kinase C, attenuate Na and Ca currents in mouse neuroblastoma cells. J Physiol (Lond) 1989;419:95–119.

    CAS  Google Scholar 

  25. Ordway RW, Singer JJ, Walsh JV Jr. Direct regulation of ion channels by fatty acids. Trend Neurosci 1991;14:96–100.

    Article  PubMed  CAS  Google Scholar 

  26. Pleumsamran A, Kim D. Membrane stretch augments the cardiac muscarinic K+ channel activity. J Membr Biol 1995;148:287–97.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kim, D. (1996). Fatty acids and cardiac K+ channels. In: Morad, M., Ebashi, S., Trautwein, W., Kurachi, Y. (eds) Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. Developments in Cardiovascular Medicine, vol 182. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3990-8_26

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3990-8_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5765-3

  • Online ISBN: 978-94-011-3990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics