Skip to main content

Pharmacological regulation of the cardiac ATP-sensitive K+ channel

  • Chapter
  • 132 Accesses

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 182))

Abstract

ATP-sensitive K+ (KATP) channels represent a family of potassium channels inhibited by intracellular ATP (ATPi) [1–5]. These intracellular ligand-gated channels are believed to link cellular metabolism with membrane electrical activity. First described in cardiac myocytes, KATP channels have been identified in many tissues and associated with essential cellular functions such as hormone secretion, vasodilation, shortening of cardiac action potentials, ischemia-related preconditioning, regulation of skeletal muscle excitability, neurotransmitter release, appetite control, and oocyte maturation [1–5]. Our knowledge of the distribution and roles of KATP channels has been primarily based on the pharmacological manipulation of these channels [6,7].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ashcroft SJH, Ashcroft FM. Properties and functions of ATP-sensitive K-channels. Cell Signal 1990;2:197–214.

    Article  PubMed  CAS  Google Scholar 

  2. Davies NW, Standen NB, Stanfield PR. ATP-dependent potassium channels of muscle cells: Their properties, regulation, and possible functions. J Bioenerg Biomembr 1991;23:509–35.

    Article  CAS  Google Scholar 

  3. Nichols CG, Lederer WJ. Adenosine triphosphate-sensitive potassium channels in the cardiovascular system. Am J Physiol 1991;261:H1675–86.

    PubMed  CAS  Google Scholar 

  4. Takano M, Noma A. The ATP-sensitive K+ channel. Prog Neurobiol 1993;41:21–30.

    Article  PubMed  CAS  Google Scholar 

  5. Terzic A, Tung R, Kurachi Y. Nucleotide regulation of ATP-sensitive K+ channels. Cardiovasc Res 1994;28:746–53.

    Article  PubMed  CAS  Google Scholar 

  6. Lazdunski M, Bernardi H, de Weille JR, Mourre C, Fosset M. Agonists and antagonists of ATP-sensitive potassium channels. Adv Nephr 1992;21:195–202.

    CAS  Google Scholar 

  7. Edwards G, Weston AH. The pharmacology of ATP-sensitive potassium channels. Annu Rev Pharmacol Toxicol 1993;33:597–637.

    Article  PubMed  CAS  Google Scholar 

  8. Quast U. Potassium channel openers: Pharmacological and clinical aspects. Fundam Clin Pharmacol 1992; 6:279–93.

    Article  PubMed  CAS  Google Scholar 

  9. Daut J, Maier-Rudolph W, von Beckerath N, Mehrke G, Gunther K, Goedel-Meinen L. Hypoxic dilation of coronary arteries is mediated by ATP-sensitive potassium channels. Science 1990;247:1341–4.

    Article  PubMed  CAS  Google Scholar 

  10. Standen NB, Quayle JM, Davies NW, Brayden JE, Huang Y, Nelson MT. Hyperpolarizing vasodilators activate ATP-sensitive K+ channels in arterial smooth muscle. Science 1989;249:177–80.

    Article  Google Scholar 

  11. Grover GJ, Sleph PG, Dzwonczyk S. Role of myocardial ATP-sensitive potassium channels in mediating preconditioning in the dog heart and their possible interaction with adenosine A1-receptors. Circulation 1992;86:1310–6.

    Article  PubMed  CAS  Google Scholar 

  12. de Weille J, Schmid-Antomarchi H, Fosset M, Lazdunski M. Regulation of ATP-sensitive K+ channels in insulinoma cells: Activation by somatostatin and protein kinase C and the role of cAMP. Proc Natl Acad Sci USA 1989; 86: 2971–5.

    Article  PubMed  Google Scholar 

  13. Fosset M, de Weille JR, Green RD, Schmid-Antomarchi H, Lazdunski M. Antidiabetic sulphonylureas control action potential properties in heart cells via high affinity receptors that are linked to ATP-dependent K+ channels. J Biol Chem 1988; 263: 7933–6.

    PubMed  CAS  Google Scholar 

  14. Ashcroft SJH, Ashcroft FM. The sulfonylurea receptor. Biochim Biophysic Acta 1992; 1175: 45–59.

    Article  CAS  Google Scholar 

  15. Virsolvy-Vergine A, Leray H, Kuroki S, Lupo B, Dufour M, Bataille D. Endosulphine, an endogenous peptidic ligand for the sulfonylurea receptor: purification and partial characterization from bovine brain. Proc Natl Acad Sci USA 1992; 89: 6629–33.

    Article  PubMed  CAS  Google Scholar 

  16. Sanguinetti M, Scott AL, Zingaro GJ, Siegl PSK. BRL 34915 (cromakalim) activates ATP-sensitive K+ current in cardiac muscle. Proc Natl Acad Sci USA 1988; 85: 8360–4.

    Article  PubMed  CAS  Google Scholar 

  17. Findlay I, Deroubaix E, Guiraudou P, Coraboeuf E. Effects of activation of ATP-sensitive K+ channels in mammalian ventricular myocytes. Am J Physiol 1989; 257: H1551–9.

    PubMed  CAS  Google Scholar 

  18. Escande D, Thuringer D, Le Guern S, Courteix J, Laville M, Cavero I. Potassium channel openers act through an activation of ATP-sensitive K+ channels in guinea-pig cardiac myocytes. Pflügers Arch 1989; 414: 669–75.

    Article  PubMed  CAS  Google Scholar 

  19. Arena JP, Kass RS. Enhancement of potassium-sensitive current in heart cells by pinacidil. Evidence for modulation of the ATP-sensitive potassium channel. Circ Res 1989; 65: 436–45.

    Article  PubMed  CAS  Google Scholar 

  20. Thuringer D, Escande D. Apparent competition between ATP and the potassium channel opener RP-49356 on ATP-sensitive K+ channels of cardiac myocytes. Mol Pharmacol 1989; 36: 897–902.

    PubMed  CAS  Google Scholar 

  21. Faivre JF, Findlay I. Action potential duration and activation of the ATP-sensitive potassium current in isolated guinea pig ventricular myocytes. Biochim Biophys Acta 1990; 1029: 167–72.

    Article  PubMed  CAS  Google Scholar 

  22. Nakayama K, Fan Z, Marumo F, Hiraoka M. Interrelation between pinacidil and intracellular ATP concentrations on activation of the ATP-sensitive K+ current in guinea pig ventricular myocytes. Circ Res 1990; 67: 1124–33.

    Article  PubMed  CAS  Google Scholar 

  23. Nichols CG, Ripoll C, Lederer WJ. ATP-sensitive potassium channel modulation of the guinea pig ventricular action potential and contraction. Circ Res 1991; 68: 280–7.

    Article  PubMed  CAS  Google Scholar 

  24. Bray KM, Quast U. A specific binding site for K+ channel openers in rat aorta. J Biol Chem 1992;267: 11689–92.

    PubMed  CAS  Google Scholar 

  25. Tung RT, Kurachi Y. On the mechanism of nucleotide diphosphate activation of the ATP-sensitive K+ channel in ventricular cell of guinea-pig. J Physiol (Lond) 1991; 437: 239–56.

    CAS  Google Scholar 

  26. Shen WK, Tung RT, Machulda MM, Kurachi Y. Essential role of nucleotide diphosphates in nicorandil-mediated activation of cardiac ATP-sensitive K+ channels. Circ Res 1991; 69: 1152–8.

    Article  PubMed  CAS  Google Scholar 

  27. Jahangir A, Terzic A, Kurachi Y. Intracellular acidification and ADP enhance nicorandil-induction of ATP-sensitive K+ channel current in cardiomyocytes. Cardiovasc Res 1994;28:831–5

    Article  PubMed  CAS  Google Scholar 

  28. Yamada M, Terzic A, Findlay I, Jahangir A, Shen W, Kurachi Y. YM934, a novel K+ channel opener, activates ATP-sensitive K+ channels in cardiac myocytes. J Pharmacol Exp Ther 1993; 267: 1544–9.

    PubMed  CAS  Google Scholar 

  29. Shen WK, Tung RT, Kurachi Y. Activation of the cardiac ATP-sensitive K+ channel by ER-001533, a newly synthesized vasorelaxant. Circ Res 1992; 70: 1054–61.

    Article  PubMed  CAS  Google Scholar 

  30. Terzic A, Tung RT, Shen WK, Yamada M, Kurachi Y. Cardiovascular profile of E4080 and its analog ER001533: Novel potassium channel openers with bradycardic properties. Cardiovasc Drug Rev 1993;11: 223–33.

    Article  CAS  Google Scholar 

  31. Terzic A, Jahangir A, Kurachi Y. HOE-234, a second generation K+ channel opener, antagonizes the ATP-dependent gating of cardiac ATP-sensitive K+ channels. J Pharmacol Exp Ther 1994; 268: 818–25.

    PubMed  CAS  Google Scholar 

  32. Kirsch GE, Codina J, Birnbaumer L, Brown AM. Coupling of ATP-sensitive K+ channels to A1 receptors by G proteins in rat ventricular myocytes. Am J Physiol 1990; 259: H820–6.

    PubMed  CAS  Google Scholar 

  33. Ito H, Tung RT, Sugimoto T et al. On the mechanism of G protein βγ subunit activation of the muscarinic K+ channel in guinea-pig atrial cell membrane. Comparison with the ATP-sensitive K+ channel. J Gen Physiol 1992; 99: 961–83.

    Article  PubMed  CAS  Google Scholar 

  34. Terzic A, Tung RT, Inanobe A, Katada T, Kurachi Y. G proteins activate ATP-sensitive K+ channels by antagonizing the ATP-dependent gating. Neuron 1994; 12: 885–93.

    Article  PubMed  CAS  Google Scholar 

  35. Schackow TE, Ten Eick RE. Enhancement of ATP-sensitive potassium current in cat ventricular myocytes by badrenoceptor stimulation. J Physiol 1994; 474: 131–45.

    PubMed  CAS  Google Scholar 

  36. Quayle JM, Bonev AD, Brayden JE, Nelson MT. Calcitonin gene-related peptide activates ATP-sensitive potassium channels in rabbit arterial smooth muscle via protein kinase A. J Physiol (Lond) 1994; 475: 9–13.

    CAS  Google Scholar 

  37. Ribalet B, Ciani S, Eddiestone GT. ATP mediates both activation and inhibition of K(ATP) channel activity via cAMP-dependent protein kinase in insulin-secreting cell lines. J Gen Physiol 1989; 94:693–717.

    Article  PubMed  CAS  Google Scholar 

  38. Wang W, Giebisch G. Dual modulation of renal ATP-sensitive K+ channel by protein kinases A and C. Proc Acad Sci USA 1991; 88:9722–5.

    Article  CAS  Google Scholar 

  39. Dunne MJ, Bullett MJ, Li G, Wollheim CB, Petersen OH. Galanin activates nucleotide-dependent K+ channels in insulin-secreting cells via a pertussis toxin-sensitive G-protein. EMBO J 1989; 8: 413–20.

    PubMed  CAS  Google Scholar 

  40. Escande D, Cavero I. K+ channel openers and “natural” cardioprotection. Trends Pharmacol Sci 1992; 13: 269–72.

    Article  PubMed  CAS  Google Scholar 

  41. Gross GJ, Auchampach JA. Role of ATP-dependent potassium channels in myocardial ischaemia. Cardio vase Res 1992; 26: 1011–6.

    Article  CAS  Google Scholar 

  42. Yao Z, Gross G. Glibenclamide antagonizes adenosine A1 receptor-mediated cardioprotection in stunned canine myocardium. Circulation 1993; 88: 235–44.

    Article  PubMed  CAS  Google Scholar 

  43. Yao Z, Gross G. Acetylcholine mimics ischemic preconditioning via a glibenclamide-sensitive mechanism in dogs. Am J Physiol 1993; 264: H2221–5.

    PubMed  CAS  Google Scholar 

  44. Janse MJ, Wit AL. Electrophysiological mechanisms of ventricular arrhythmias resulting from myocardial ischemia and infarction. Physiol Rev 1989; 69:1049–169.

    PubMed  CAS  Google Scholar 

  45. Wilde AAM, Escande D, Schumacher CA, Thuringer D, Mestre M, Fiolet JWT, Janse MJ. Potassium accumulation in the globally ischemic mammalian heart. A role for the ATP-sensitive potassium channel. Circ Res 1990; 67: 835–43.

    Article  PubMed  CAS  Google Scholar 

  46. Weiss JN, Venkatesh N, Lamp ST. ATP-sensitive K+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle. J Physiol 1992; 447; 649–73.

    PubMed  CAS  Google Scholar 

  47. Findlay I. The ATP-sensitive K+ channel of cardiac muscle and action potential shortening during metabolic stress. Cardiovasc Res. In press.

    Google Scholar 

  48. Sturgess NC, Ashford MLJ, Cook DL, Hales CN. The sulfonylurea receptor may be an ATP-sensitive potassium channel. Lancet 1985; 8483: 474–5.

    Article  Google Scholar 

  49. Deleers M, Malaisse WJ. Binding of hypoglycaemic sulphonylureas to an artificial phospholipid bilayer. Diabetologia 1984; 26: 55–9.

    Article  PubMed  CAS  Google Scholar 

  50. Zunkler BJ, Trube G, Panten U. How do sulphonylureas approach their receptor in the B-cell plasma membrane. Naunyn-Schmiedeberg’s Arch Pharmacol 1989; 340: 328–32.

    Article  CAS  Google Scholar 

  51. Findlay I. Effects of pH upon the inhibition by sulfonylurea drugs of ATP-sensitive K+ channels in cardiac muscle. J Pharmacol Exp Ther 1992; 262: 71–9.

    PubMed  CAS  Google Scholar 

  52. Findlay I. Inhibition of ATP-sensitive K+ channels in cardiac muscle by the sulfonylurea drug glibenclamide. J Pharmacol Exp Ther 1992; 261: 540–5.

    PubMed  CAS  Google Scholar 

  53. Schwanstercher C, Dickel C, Panten U. Cytosolic nucleotides enhance the tolbutamide sensitivity of the ATP-sensitive K+ channel in mouse pancreatic β cells by their combined actions at inhibitory and stimulatory receptor. Mol Pharmacol 1992; 41; 480–6.

    Google Scholar 

  54. Schwanstecher M, Brandt C, Behrends S, Schaupp U, Panten U. Effect of MgATP on pinacidil-induced displacement of glibenclamide from the sulfonylurea receptor in a pancreatic β-cell line and rat cerebral cortex. Br J Pharmacol 1992; 106: 295–301.

    Article  PubMed  CAS  Google Scholar 

  55. Findlay I. Sulphonylurea drugs no longer inhibit ATP-sensitive K+ channels during metabolic stress in cardiac muscle. J Pharmacol Exp Ther 1992; 266: 456–67.

    Google Scholar 

  56. Ripoll C, Lederer WJ, Nichols CG. On the mechanism of inhibition of KATP channels by glibenclamide in rat ventricular myocytes. J Cardiovasc Electrophysiol 1993; 4: 38–47.

    Article  PubMed  CAS  Google Scholar 

  57. Ashford MLJ, Boben PR, Treherne JM. Tolbutamide excites rat glucoreceptive ventro-medial hypothalamic neurones by indirect inhibition of ATP-K+ channels. Br J Pharmacol 1990; 101; 531–40.

    Article  PubMed  CAS  Google Scholar 

  58. Venkatesh N, Lamp ST, Weiss JN. Sulfonylureas, ATP-sensitive K+ channels and cellular K+ loss during hypoxia, ischemia and metabolic inhibition in mammalian ventricle. Circ Res 1991; 69: 623–37.

    Article  PubMed  CAS  Google Scholar 

  59. Deutsch N., Weiss JN. ATP-sensitive K+ channel modification by metabolic inhibition in isolated guinea-pig ventricular myocytes. J Physiol (Lond) 1993; 465: 163–79.

    CAS  Google Scholar 

  60. Terzic A, Findlay I, Hosoya Y, Kurachi Y. Dualistic behavior of ATP-dependent K+ channel towards intracellular nucleoside diphosphates. Neuron 1994;12:1049–58.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Kurachi, Y., Terzic, A., Findlay, I. (1996). Pharmacological regulation of the cardiac ATP-sensitive K+ channel. In: Morad, M., Ebashi, S., Trautwein, W., Kurachi, Y. (eds) Molecular Physiology and Pharmacology of Cardiac Ion Channels and Transporters. Developments in Cardiovascular Medicine, vol 182. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3990-8_25

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3990-8_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5765-3

  • Online ISBN: 978-94-011-3990-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics