Skip to main content

Zinc in the regulation and therapy of inflammatory diseases and gastrointestinal ulceration

  • Chapter
Copper and Zinc in Inflammatory and Degenerative Diseases
  • 114 Accesses

Abstract

Zinc is a key trace metal ion that is important in regulating a wide variety of metabolic, hormonal, immunological, neuronal and epithelial cell functions [1–4] (Chapters 2, 4 and 5). Over 300 enzymic reactions are known to depend on the presence of zinc [3]. These roles of zinc may be considered to have importance for (a) structural components of metalloproteins (e.g. in thymulin, gene-regulatory proteins, steroid receptors, (b) catalytic activity of enzymes (e.g. in various oxido-reductases, hydrolases, ligases, lyases) and (c) co-active functions (e.g. with Cu in superoxide dismutase, or phospholipase C [3].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Chesters JK. Trace element-gene interactions with particular reference to zinc. Proc Nutr Soc. 1991;50:123–129.

    PubMed  CAS  Google Scholar 

  2. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118.

    PubMed  CAS  Google Scholar 

  3. Kruse-Jarres JD. Basic principles of zinc metabolism. In: Kruse-Jarres JD, Schölmerich J, eds. Zinc and Diseases of the Digestive Tract. Dordrecht: Kluwer Academic Publishers; 1997:3–15.

    Google Scholar 

  4. Fabris N. Zinc, the immune and endocrine system, and ageing. In: Kruse-Jarres JD, Schölmerich J, eds. Zinc and Diseases of the Digestive Tract. Dordrecht: Kluwer Academic Publishers; 1997:36–51.

    Google Scholar 

  5. Milanino R, Rainsford KD, Velo GP, eds. Copper and Zinc in Inflammation. Lancaster: Kluwer Academic Publishers; 1989.

    Google Scholar 

  6. Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Vols. 1 and 2. New York: Marcel Dekker; 1995.

    Google Scholar 

  7. Neve J, Chappuis C, Lamand M, eds. Therapeutic Uses of Trace Elements. New York: Plenum Publishing Corp.; 1996.

    Google Scholar 

  8. Simkin PA. Treatment of rheumatoid arthritis with oral zinc sulfate. In; Rainsford KD, Brune K, Whitehouse MW, eds. Trace Elements in the Pathogenesis and Treatment of Inflammation. Basel: Birkhäuser; 1981:567–596.

    Google Scholar 

  9. Frigo A, Bambara LM, Concari E et al. Concerning the potential therapeutic value of zinc in rheumatoid and psoriatic arthritis. In: Milanino R, Rainsford KD, Velo GP. eds. Copper and Zinc in Inflammation. Lancaster: Kluwer Academic Publishers; 1989:133–142.

    Google Scholar 

  10. Dore-Duffy P, Peterson M, Catalanotto F et al. Zinc profiles in rheumatoid arthritis. Clin Exp Rheumatol. 1990;8:541–546.

    PubMed  CAS  Google Scholar 

  11. Svenson KLG, Hällgren R, Johansson E, Lindh U. Reduced zinc in peripheral blood cells from patients with inflammatory connective tissue diseases. Inflammation. 1985;9:189–199.

    PubMed  CAS  Google Scholar 

  12. Mussalo-Rauhamaa H, Kontinnen YT, Lehto J, Honkanen V. Predictive clinical and laboratory parameters for serum zinc and copper in rheumatoid arthrits. Ann Rheum Dis. 1988;47:816–819.

    PubMed  CAS  Google Scholar 

  13. Rofe AM, Philcox JC, Haynes DR, Coyle P. Wasting in adjuvant-induced arthritis and its relationship to plasma zinc, copper and liver metallothionein. Agents Action. 1994;42:60–62.

    CAS  Google Scholar 

  14. Grider A, Cousins RJ. Role of metallothionein in copper and zinc metabolism: special reference to inflammatory conditions. In: Milanino R, Rainsford KD, Velo GP, eds. Copper and Zinc in Inflammation. Lancaster: Kluwer Academic Publishers. 1989:21–31.

    Google Scholar 

  15. Naveh Y, Shapira D, Ravel Y, Geller E, Scharf Y. Zinc metabolism in rheumatoid arthritis: Plasma and urinary zinc and its relationship to disease activity. J Rheumatol. 1977;24:643–646.

    Google Scholar 

  16. Westmoreland N. Connective tissue alterations in zinc deficiency. Fed Proc. 1971;30:1001–1010.

    PubMed  CAS  Google Scholar 

  17. Calhoun NR, Smith JC, Becker KL. The role of zinc in bone metabolism. Orthopedics. 1974;103:212–234.

    Google Scholar 

  18. Yamaguchi M, Mochizuki A, Okada S. Stimulation of bone resorption by comparatively high dose of zinc in rats. J Pharm Dyn. 1982;5:501–504.

    CAS  Google Scholar 

  19. Yamaguchi M, Kishi S. Zinc compounds inhibit osteoclast-like cell formation at the earlier stage of rat marrow culture but not osteoclast function. Mol Cell Biol. 1996;158:171–177.

    CAS  Google Scholar 

  20. Saltman PD, Strause LG. The role of trace metals in osteoporosis. Am Coll Nut. 1993;12:384–389.

    CAS  Google Scholar 

  21. Basle MF, Mawas Y, Andran M, Clochon P, Rebel A, Allain P. Concentration of bone elements in osteoporosis. J Bone Min Res. 1990:5:41–47.

    CAS  Google Scholar 

  22. Thompson RPH. Zinc and immune function in Crohn’s disease. In: Kruse-Jarres JD, Schölmerich J, eds. Zinc and Diseases of the Digestive Tract. Dordrecht: Kluwer Academic Publishers; 1997:72–76.

    Google Scholar 

  23. Animashaun A, Kelleher J, Heatley RV, Trejdosiewicz LK, Losowsky MS. The effect of zinc and vitamin C supplementation on the immune status of patients with Crohn’s Disease. Clin Nut. 1990;9:137–146.

    CAS  Google Scholar 

  24. McClain CJ, Hill DB, Shedlofsky SI, Gaetke L, Hennig B. Zinc, cytokines and liver disease. In: Kruse-Jarres JD, Schölmerich J, eds. Zinc and Diseases of the Digestive Tract. Dordrecht: Kluwer Academic Publishers, Dordrecht, 1997:77–86.

    Google Scholar 

  25. Parés A, Giménez A, Deulofeu R, Caballe A, Rodes J. Experimental effects of zinc in liver and gut. In: Kruse-Jarres JD, Schölmerich J, eds. Zinc and Diseases of the Digestive Tract. Dordrecht: Kluwer Academic Publishers; 1997:59–71.

    Google Scholar 

  26. Prasad AS, Miale A Jr, Farid Z, Sandstead HH, Schubert AR, Darby WJ. Biochemical studies on dwarfism hypogonadism and anemia. Arch Int Med. 1963;111:407–428.

    CAS  Google Scholar 

  27. Halstead JA, Ronaghy HA, Abadi P et al. Zinc deficiency in man. The Shiraz Experiment. Am J Med. 1972;53:277–284.

    Google Scholar 

  28. Sandstead HH. Zinc deficiency. A public health problem? Am J Dis Child. 1991;145:853–859.

    PubMed  CAS  Google Scholar 

  29. Moser-Veillon PB. Zincxonsumption patterns and dietary recommendations. J Am Diet Assoc. 1990;90:1089–1093.

    PubMed  CAS  Google Scholar 

  30. Hackman RM, Hurley LS. Interactions of salicylate, dietary zinc, and genetic strain in uralogenesis in rats. Teratology. 1984;30:225–236.

    PubMed  CAS  Google Scholar 

  31. Beisel WR. Zinc Metabolism in Infection. In: Beisel WR, ed. Zinc Metabolism: Current Aspects in Health and Disease. New York: Alan R Liss Inc. Progr Clin Biol Revs. 1977; 14: 155–176.

    Google Scholar 

  32. Wannemacher RW Jr, Pekarek RS, Klainer AS et al. Detection of a leukocyte endogenous mediator-like mediator of serum amino acid and zinc depression during various infections and illnesses. Infect Immun. 1975;11:873–875.

    PubMed  Google Scholar 

  33. Powanda MC. Systemic alterations in metal metabolism during inflammation as part of an initegrated response to inflammation. In: Rainsford KD, Brune K, Whitehouse MW, eds. Trace Elements in the Pathogenesis and Treatment of Inflammation. Basel: Birkhäuser; 1981:121–135.

    Google Scholar 

  34. Cunningham-Randies S, Bockman RS et al. Physiological and pharmacological effects of zinc on immune response. Ann NY Acad Sci. 1990;587:113–122.

    Google Scholar 

  35. Falutz J. The role of zinc in HIV-induced immunosuppression. Ann NY Acad Sci. 1990;587:286–288.

    Google Scholar 

  36. Rainsford KD. Zinc and the stomach;anti-ulcer activity of zinc compounds. In: Kruge-Jarres JD, Scholmerich J, eds. Zinc and Diseases of the Digestive Tract. Dordrecht: Kluwer Academic Publishers; 1997:9–95.

    Google Scholar 

  37. Garner A, Hurst BC, Heylings JR, Flemström G. Role of gastroduodenal HCO2 transport in acid disposal and mucosal protection. In: Case RM, Garner A, Turnberg LA, Yoiung JA, eds. Electrolyte and Water Transport Across Gastrointestinal Epithelia. New York: Raven Press; 1982:235–252.

    Google Scholar 

  38. Kiefer LL, Fierke CA. Functional characterization of carbonic anhydrase II variants with altered zinc binding sites. Biochemistry. 1994;33:15233–15240.

    PubMed  CAS  Google Scholar 

  39. Kadakia SC, Wong RKH, Maydonovitch CL, Nelson NR, Henkin RI. Serum and tissue zinc concentrations in patients with endoscopie esopathagitis. Dig Dis Sci. 1992;37:513–516.

    PubMed  CAS  Google Scholar 

  40. Cho CF. Zinc:absorption and role in gastrointestinal metabolism and disorders. Dig Dis. 1991;9:49–60.

    PubMed  CAS  Google Scholar 

  41. Cho CH, Fong LYY, Ma PCC, Ogle CW. Zinc deficiency:its role in gastric secretion and stress-induced gastric ulceration in rats. Pharmacol Biochem Behav. 1987;26:293–297.

    PubMed  CAS  Google Scholar 

  42. Constantinidis J. [Alzheimer’s disease and the zinc theory]. Encephale, 1990;16:231–239.

    PubMed  CAS  Google Scholar 

  43. Corrigan FM, Reynolds GM, Ward NI. Hippocampal tin, aluminium and zinc in Alzheimer’s disease. BioMetals. 1993;6:149–154.

    PubMed  CAS  Google Scholar 

  44. Vance DE, Ehmann WD, Marksberg WR. Search for longitudinal variations in trace element levels in nails of Alzheimer’s disease patients. Biol Trace Elem Res. 1990;26-27:461–470.

    PubMed  CAS  Google Scholar 

  45. Lui E, Fisman M, Wong C, Diaz F. Metals and the liver in Alzheimer’s disease. An investigation of hepatic zinc, cadmium and metallothionein. J Am Geriatr Soc. 1990;38:633–639.

    PubMed  CAS  Google Scholar 

  46. Jeandel C, Nicolas MB, Dubois F, Nabet-Belleville F, Penin F, Cuny G. Lipid peroxidation and free radical scavengers in Alzheimer’s disease. Gerontology. 1989;35:275–282.

    PubMed  CAS  Google Scholar 

  47. Aisen PS. Inflammation and Alzheimer’s disease: mechanisms and therapeutic strategies. Gerantology. 1997;43:143–149.

    CAS  Google Scholar 

  48. Iwamoto N, Kobayashi K, Kosaka K. The formation of prostaglandins in postmortem cerebral cortex of Alzheimer-type dementia patients. J Neurol. 1989;236:80–84.

    PubMed  CAS  Google Scholar 

  49. Breitner JCS. The role of anti-inflammatory drugs in the prevention of Alzheimer’s disease. Ann Rev Med. 1996;47:401–411.

    PubMed  CAS  Google Scholar 

  50. Mugtthaup G, Bush AI, Pollwin P, Masters CL. Interaction between the zinc (II) and heparin binding site of the Alzheimer’s disease βA4 amyloid precursor protein. FEBS Lett. 1994;355:151–154.

    Google Scholar 

  51. Bush AI, Mutthaup G, Moir RD et al. A novel zinc (II) binding site modulates the function of BA4 amyloid protein precursor of Alzheimer’s disease. J Biol Chem. 1993;268:16109–16112.

    PubMed  CAS  Google Scholar 

  52. Currie JN, Whyte S, Maruff P et al. Zinc-induced perturbation of cognition and plasma levels of amyloid precursor protein in Alzheimer’s disease. Lancet. 1994; Sept. 12th.

    Google Scholar 

  53. Fairlie DP, Whitehouse MW. Transdermal delivery of inorganic complexes as metal drugs or nutritional supplements. Drug Disc Design. 1991;8:83–102.

    CAS  Google Scholar 

  54. Whitehouse MW, Rainsford KD, Taylor RM, Vernon-Roberts B. Zinc monoglycerolate:a slow-release source of zinc with anti-arthritic activity in rats. Agents Actions. 1990;31:47–58.

    PubMed  CAS  Google Scholar 

  55. Radoslovich EW, Raupach M, Slade PG, Taylor RM. Crystalline cobalt, zinc, manganese, andiron alkoxides of glycerol. Aust J Chem. 1970;23:1963–1971.

    CAS  Google Scholar 

  56. Fairlie DP, Whitehouse MW, Taylor RM. Zinc monoglycerolate — a slow release source of therapeutic zinc:solubilization by endogenous ligands. Agents Actions. 1992;36:152–158.

    PubMed  CAS  Google Scholar 

  57. Yatsuyanagi J, Iwai K, Oyiso T. Suppressive effect of zinc on some functions of neutrophils:-studies with carrageenin-induced inflammation in rats. Chem Pharm Bull. 1987;35:699–704.

    PubMed  CAS  Google Scholar 

  58. The British Pharmaceutical Codex, 1954. London: The Pharmaceutical Press; 1955.

    Google Scholar 

  59. Bennett JE. Antimicrobial Agents [continued]. Antifungal agents. In: Gilman AG, Rall TW, Nies AS, Taylor P, eds. Goodman LS and Gilman A. The Pharmacological Basis of Therapeutics. 8th Edn. New York: Pergamon Press; 1990;1165–1181.

    Google Scholar 

  60. Imokawa G, Shimizu H, Okamoto K. Antimicrobial effect of zinc pyrithione. J Soc Cosmet Chem. 1982;33:27–37.

    CAS  Google Scholar 

  61. Feucht CL, Allen BS, Chalker DK, Smith JG Jr. Topical erythromycin with zinc in acne. J Am Acad Dermatol. 1980;3:483–491.

    PubMed  CAS  Google Scholar 

  62. Rasmussen JE. Zinc and acne. Semin Dermatol. 1982;1:261–263.

    Google Scholar 

  63. Schachter L, Eaglstein W, Kittles C, Mertz P. Topical erythromycin and zinc therapy for acne. J Am Acad Dermatol. 1990;22:263–270.

    Google Scholar 

  64. Williams KJ, Meltzer R, Brown RA, Tanaka Y, Chiu RCJ The effect of topically applied zinc on the healing of open wounds. J Surg Res. 1979;27:62–67.

    PubMed  CAS  Google Scholar 

  65. Skog E, Wahlberg JE. A comparative investigation of the percutaneous absorption of metal compounds in the guinea pig by means of the radioactive isotopes:51 Cr, 58Co, 65Zn, 110mAg, 115mCd, 2O3mHg. J Invest Dermatol. 1964;43:187–192.

    PubMed  CAS  Google Scholar 

  66. Derry JE, McLean WM, Freeman JB. A study of the percutaneous absorption from topically applied zinc oxide ointment. J Parent Ent Nutr. 1983;7:131–135.

    CAS  Google Scholar 

  67. Haxthausen H. Some remarks on the bactericidal properties of zinc oxide. Br J Dermatol. 1928;40:497–501.

    Google Scholar 

  68. Bamberger DM, Herndon BC, Scivarna PR. The effect of zinc on microbial growth and bacterial killing by cefazolin in Staphylococcus aureaus abscess milieu. J Infect Dis. 1993;168:893–896.

    PubMed  CAS  Google Scholar 

  69. Walev I, Wollert KC, Wise L, Falke D. Characterisation of fusion from without induced by herpes simplex virus. ArchVirol. 1991;117:29–44.

    CAS  Google Scholar 

  70. Lee AR, Huang WH. Zinc sulphadiazines:novel topical antimicrobial agents for burns. J Pharm Pharmacol. 1995;47:503–509.

    PubMed  CAS  Google Scholar 

  71. Fraser DX, Langman MJS, Misienwicz JJ, Shandon HH. Clinical trial of a new carbenoxolone analogue (Bx24), zinc sulphate and vitamin A in the treatment of gastric ulcer. Gut. 1972;13:459–463.

    PubMed  CAS  Google Scholar 

  72. Frommer DJ. The healing of gastric ulcers by zinc sulphate. Med J Aust. 1975;2:793–796.

    PubMed  CAS  Google Scholar 

  73. Ito M, Inaguma K, Suzuki Y, Seganin T, Suzuki Y. Healing-promoting action of the zinccimetidine complex on acetic acid-induced gastric ulcers in rats. Jpn J Pharmacol. 1995;68:287–295.

    PubMed  CAS  Google Scholar 

  74. Escolar G, Bulbena O. Zinc compounds, a new treatment in peptic ulcer. Drugs Exptl Clin Res. 1989;15:83–89.

    CAS  Google Scholar 

  75. Rodriguez de la Sema A, Diaz-Rubio M and the Spanish Study Group on NSAID Induced Gastroenteropathy Prevention. Multicenter clinical trial of zinc acexamate in the prevention of nonsteroidal anti-inflammatory drug induced gastroenteropathy. J Rheumatol. 1994;21:927–933.

    Google Scholar 

  76. Jimenez E, Bosch F, Galmes JL, Banos JE. Meta analysis of efficacy of zinc acexamate in peptic ulcer. Digestion. 1992;51:18–26.

    PubMed  CAS  Google Scholar 

  77. Graham DY, Smith JL, Dobbs SM. Gastric adaptation occurs with aspirin administration in man. Dig Dis Sci. 1983;28:1–6.

    PubMed  CAS  Google Scholar 

  78. Shorrock CJ, Rees WDW. Mucosal adaptation to indomethacin induced gastric damage studies on morphology, blood flow, and prostaglandin E2 metabolism. Gut. 1992;33:164–169.

    PubMed  CAS  Google Scholar 

  79. Explugues JV, Bublena O, Escolar G, Ezequiel M-B, Esplugues J. Effects of zinc acexamate on gastric mucosal resistance factors. Eur J Pharmacol. 1985;109:145–151.

    Google Scholar 

  80. Escolar S, Camarasa J, Navarro C, Vernetta C, Bulbena O. Antiulcerogenic activity of zinc acexamate in different experimental models. Meth Find Exptl Clin Pharmacol. 1987;9:423–427.

    CAS  Google Scholar 

  81. Escolar G, Navarro S, Sendros S, Bulbena O. Effect of cold-restraint stress and zinc acexamate on gastric mucus production in intact glands. Arch Int Pharmacodyn Ther. 1987;290:128–137.

    PubMed  CAS  Google Scholar 

  82. Pfeiffer CJ, Bulbena O, Esplugues JV, Escolar G, Navarro C, Esplugues J. Anti-ulcer and membrane stabilizing actions of zinc acexamate. Arch Int Pharmacodyn. 1987;285:148–157.

    PubMed  CAS  Google Scholar 

  83. Navarro C, Escolar G, Banos JE, Casanovas Bulbena O. Effects of zinc acexamate on gastric mucosal production of prostaglandin E2 in normal and stressed rats. Prost Leuk Essent Fatty Acids. 1988:75-80.

    Google Scholar 

  84. Barbarino E, Toganel E, Brilinschi C. Protective effects of zinc acexamate on experimental gastric ulcers, a histochemical study. Meth Find Exp Clin Pharmacol. 1992;14:685–694.

    CAS  Google Scholar 

  85. Bulbena O, Escolar G, Navarro C, Bravo I, Pfeiffer CJ. Gastroprotective effect of zinc acexamate against damage induced by nonsteroidal antiinflammatory drugs. A morphological study. Dig Dis Sci. 1993;38:730–739.

    PubMed  CAS  Google Scholar 

  86. Cho CH, Ogle CW, Dai S. Effects of zinc chloride on gastric secretion and ulcer formation in pylorus-occluded rats. Eur J Pharmacol, 1977;43:337–341.

    Google Scholar 

  87. Cho CH, Ogle CW. The effects of zinc sulphate on vagal induced mast cell changes and ulcers in the rat stomach. Eur J Pharmacol. 1977;43:315–322.

    PubMed  CAS  Google Scholar 

  88. Cho CH, Ogle CW. A correlative study of the anti-ulcer effects of zinc sulphate in stressed rats. Eur J Pharmacol. 1978;48:97–105.

    PubMed  CAS  Google Scholar 

  89. Ogle CW, Cho CH. Protection by zinc sulphate against reserpine-induced ulceration and other gastric effects in the rat. Pharmacology. 1978;17:254–261.

    PubMed  CAS  Google Scholar 

  90. Rainsford KD. The biochemical protective mechanisms against non-steroidal anti-inflammatory drug induced GI damage. Acta Physiol Hung. 1989;73:261–278.

    PubMed  CAS  Google Scholar 

  91. Pfeiffer CJ, Cho CH, Chi H, Cheema A, Saltman D. Reserpine-induced gastric ulcers.protection by lysosomal stabilization due to zinc. Eur J Pharmacol. 1980;61:347–353.

    PubMed  CAS  Google Scholar 

  92. Cho CH, Ogle CW, Wong SH, Koo MWL. Effects of zinc sulphate on ethanol-and indomethacin-induced ulceration and changes in prostaglandin E2 and histamine levels in the rat gastric glandular mucosa. Digestion. 1985;32:288–295.

    PubMed  CAS  Google Scholar 

  93. Wong SH, Cho CH, Ogle CW. Protection by zinc sulphate against ethanol-induced ulceratio:preservation of the gastric mucosal barrier. Pharmacology. 1986;33:94–102.

    PubMed  CAS  Google Scholar 

  94. Lloris JM, Esplugues JV, Sarria B et al. Effects of zinc sulphate on gastric mucosal blood flow and gastric emptying of the rat. J Pharm Pharmacol. 1988;40:60–61.

    PubMed  CAS  Google Scholar 

  95. Rodrigues LEA, de C Mathias CM, Orrico M, Berry JP. Antiulcerative action of zinc ions:effect of lysosomal stability of gastric mucosa. Trace Elem Med. 1991;8:109–112.

    CAS  Google Scholar 

  96. Mahadevan D, Ndirika A, Vincent J, Bashford L, Chambers T, Pasternak C. Protection against membrane-mediated cytotoxicity by calcium and zinc. Am J Pathol. 1990;136:513–520.

    PubMed  CAS  Google Scholar 

  97. Dupuy D, Szabo S. Protection by metals against ethanol-induced gastric mucosal injury in the rat. Comparative biochemical and pharmacologic studies implicate protein sulfhydryls. Gastroenterology. 1986;91:966–974.

    PubMed  CAS  Google Scholar 

  98. Szabo S. Experimental basis for a role for sulfhydryls and dopamine in ulcerogenesis:a primer for cytoprotection-organoprotection. Klin Wochenschr. 1986;64:116–122.

    PubMed  CAS  Google Scholar 

  99. Zalewski PD, Forbes IJ, Giannakis C. Physiological role for zinc in prevention of apoptosis (gene-directed death). Biochem Intern. 1991;24:1093–1101.

    CAS  Google Scholar 

  100. Wetterholum A, Macchia L, Haeggstrom JZ. Zinc and other divalent actions inhibit purified leukotriene A4 hydrolase and leukotriene B4 biosynthesis in human polymorphonuclear leukocytes. Arch Biochem Biophys. 1994;311:263–271.

    Google Scholar 

  101. Yoshikawa T, Naito Y, Tanigawa T et al. Effect of zinc-carnosine chelate compound (Z-103), a novel anti-oxidant on acute gastric mucosal injury induced by ischemia-reperfusion in rats. Free Rad Res Commun. 1991;14:289–296.

    CAS  Google Scholar 

  102. Cho CH. Protective effects of zinc L-carnosine chelate compound (Z-103), a novel antioxidant, on acute gastric mucosal injury induced by ischemia-reperfusion in rats. Drug Devel Res. 1992;27:61–65.

    CAS  Google Scholar 

  103. Hori Y, Yoshikawa T, Yoneta T et al. Effect of zinc-carnosine chelate compound (Z-103) on the AAPH-induced lipid peroxidation of rat gastric mucosa. Igakuno Aycini. 1992; 160:529–530.

    CAS  Google Scholar 

  104. Ito M, Shii D, Segami T, Kojima R, Suzuki Y. Preventative actions of N-(3-aminopropionyl)-L-histidinato zinc (Z-103) through increases in the activities of oxygen-derived free radical scavenging enzymes in the gastric mucosa on ethanol-induced gastric mucosal damage in rats. Jap J Pharmacol. 1992;59:267–274.

    PubMed  CAS  Google Scholar 

  105. Fwuta S, Toyama S, Sano H. Absorption mechanism of Polaprezinc (zinc L-carnosine complex) by an inverted sac method. Xenobiotica. 1994;24:1085–1094.

    Google Scholar 

  106. Cho CH, Chen BW, Luk CT, Lam SK. The cytoprotective effect of zinc L-carnosine on ethanol-induced gastric gland damage in rabbits. J Pharm Pharmacol. 1992;44:364–365.

    PubMed  CAS  Google Scholar 

  107. Rainsford KD. Protective effects of the slow-release zinc complex, zinc monoglycerolate [Glyzinc], on the gastro-intestinal mucosae of rodents. Exp Clin Gastroenterol. 1992;1:349–360.

    Google Scholar 

  108. Rainsford KD, Whitehouse MW. Anti-ulcer activity of a slow-release zinc complex, zinc monoglycerolate (Glyzinc). J Pharm Pharmacol. 1992;44:476–482.

    PubMed  CAS  Google Scholar 

  109. Rainsford KD, Goldie J, Hunt RH. Zinc compounds combined with cyclodextrin inhibit growth of Helicobacter pylori in vitro. Pharmac Sci. 1997;3:1–3.

    Google Scholar 

  110. Barbarino F, Toganel E, Brilinschi C, Ciupe I, Pop I, Marinescu I. Effects of zinc-aspartate and zinc glycinate in healthy rats and on reserpine induced gastric lesions. Biol Trace Elem Res. 1988;16:253–267.

    PubMed  CAS  Google Scholar 

  111. Chvapil M. Effect of zinc on cells and biomembranes. Med Clin N Am. 1976;60:799–812.

    PubMed  CAS  Google Scholar 

  112. Beisel WR. Zinc metabolism in infection. In: Beisel WR, ed. Zinc Metabolism: Current Aspects in Health and Disease. New York: Alan R Liss; 1977;155–176.

    Google Scholar 

  113. Keen CL, Gershwin ME. Zinc deficiency and immune function. Ann Rev Nutr. 1990; 10:415–431.

    CAS  Google Scholar 

  114. Woodward B. Zinc, a pharmacologically potent essential nutrient:focus on immunity. Can Med Assoc J. 1991; 145:1469.

    CAS  Google Scholar 

  115. Fabris N. Immune system and aging:euroimmunological implications. Int J Immunopathol Pharmacol. 1992;5:93–102.

    Google Scholar 

  116. Mapes CA, Bailey PT, Matson CF, Hauer EC, Sobocinski PZ. In vitro and in vivo actions of zinc ion affecting cellular substances which influence host metabolic responses to inflammation. J Cell Physiol. 1978;95:115–124.

    PubMed  CAS  Google Scholar 

  117. Sunderman FW. The influence of zinc on apoptosis. Ann Clin Lab Sci. 1995;25:134–142.

    PubMed  CAS  Google Scholar 

  118. Singh KP, Zaidi SIA, Raiuddin Saxena AK, Murthy RC, Ray PK. Effect of zinc on immune functions and host resistance against infection and tumor challenge. Immunopharm Immunotox. 1992;14:813–840.

    CAS  Google Scholar 

  119. Pories WJ, De Wys W, Flynn A, Mansour EG, Strain WH. Zinc requirements for tumor growth. In: Kirchgessner M, ed. Trace Element Metabolism in Man and Animals. Proceedings of the 3rd International Symposium. 1977. 1978:354-356.

    Google Scholar 

  120. Jong MK, Adham NF, Heng MCY, Costea NV, Heng MK. Trace Element Metabolic Alterations of zinc and prostaglandins in both human and animal colonic tumor cells. J Am Coll Nutr. 1995;14:473–479.

    Google Scholar 

  121. Dragulescu C, Havlik I, Maurer A, Policec S, Tropein V, Csaki N. Coordinate compounds with a potential antitumor activity IV. Zinc complexes with amino acids. Farmacia (Bucharest). 1980;28:139–142.

    CAS  Google Scholar 

  122. Woster AD, Failla ML, Taylor MW, Weinberg ED. Zinc suppression of initiation of sarcoma growth. S Afr J Med. 1972;37:85–90.

    Google Scholar 

  123. Atassi G, Dumont P, Harteel JC. Potentiation of the anti-tumor activity of 2-formylpyridine thiosemicarbazone by metal chelation:2-formylpyridine thiosemicarbazone zinc sulphate (NSC 294721). Eur J Cancer. 1979;15:451–459.

    PubMed  CAS  Google Scholar 

  124. Rao EA, Saryan LA, Antholine WE, Petering DH. Cytotoxic and antitumor properties and bleomycin and several of its metal complexes. J Med Chem. 1980;23:1310–1318.

    PubMed  CAS  Google Scholar 

  125. Tobey RA, Enger MD, Friffiths JK, Hildebrand CE. Inducible protective proteins:a potentially novel approach to chemotherapy. Ann NY Acad Sci. 1982;397:256–271.

    PubMed  CAS  Google Scholar 

  126. White JR. Streptonigrin-transition metal complexes:binding to DNA and biological activity. Biochem Biophys Res Commun. 1977;77:387–391.

    PubMed  CAS  Google Scholar 

  127. Butterworth BE, Grunert RR, Korant BD, Lonberg-Holen, Yin FH. Replication of rhinoviruses. Arch Virol. 1976;51:169–189.

    PubMed  CAS  Google Scholar 

  128. Kuester RK, Routson LB, Chaudhary P, Lyttle CD. Effects of cadmium and zinc on herpes viruses infection and repair. In Vitro Toxicol. 1993;16:25–31.

    Google Scholar 

  129. Varadinova TL, Bontchev PR, Nacher CK. et al. Mode of action of zinc-complexes on herpes simplex type 1 infection in vitro. J Chemother. 1993;5:3–9.

    PubMed  CAS  Google Scholar 

  130. Spears JW, Harvey RW, Brown TT Jr. Effects of zinc methionine and zinc oxide on performance, blood characteristics and antibody titer response to viral vaccination in stressed feeder calves. J Am Vet Med Assoc. 1991;199:1731–1733.

    PubMed  CAS  Google Scholar 

  131. Al-Nakib W, Higgins PG, Barrow I, Batstone G, Tyrell DAJ Prophylaxis and treatment of rhinovirus colds with zinc gluconate lozenges. J Antimicrob Chemother. 1987;20:893–901.

    PubMed  CAS  Google Scholar 

  132. Radelli L, Delia-Bella S, Molteni M et al. Cimetidine and zinc sulphate in the treament of relapsing herpetic infections. Int J Clin Lab Res. 1991;21:204.

    PubMed  CAS  Google Scholar 

  133. Mayer ML, Vyklicky L Jr. The action of zinc on synaptic transmission and neuronal excitability in cultures of mouse hippocampus. J Physiol. 1989;415:351–365.

    PubMed  CAS  Google Scholar 

  134. Smart TG, Constanti A. Pre-and postsynaptic effects of zinc on the in vitro prepyriform neurones. Neurosci Lett. 1983;40:205–211.

    PubMed  CAS  Google Scholar 

  135. Wright JM, Li C. Zn2+ potentiates steady-state ATP activated currents in rat nodose ganglion neurons by increasing the burst duration of a 35 ps channel. Neurosci Lett. 1995;193:177–180.

    PubMed  CAS  Google Scholar 

  136. Sarria B, Cortijo J, Marti-Cabrera M, Marcillo E, Espluges J. Antagonism of calcium by zinc in guinea pig isolated taenia caeci and trachealis muscle. Br J Pharmacol. 1989;97:19–26.

    PubMed  CAS  Google Scholar 

  137. Kubow S, Bray TM, Bettger WJ. Effects of dietary zinc and copper on free radical production by rat lung and liver. Can J Physiol Pharmacol. 1986;64:1281–1285.

    PubMed  CAS  Google Scholar 

  138. Bray TM, Bettger WJ The physiological role of zinc as an antioxidant. Free Rad Biol Med. 1990;8:281–291.

    PubMed  CAS  Google Scholar 

  139. Sprietsma JE. Zinc-controlled Th1/Th2 switch significantly determines development of diseases. Med Hypoth. 1997;49:1–14.

    CAS  Google Scholar 

  140. Telford WG, Fraker PJ Preferential induction of apoptosis in mouse CD4+ CD8+ βTCR10 CD3E10 thymocytes by zinc. Am J Physiol. 1995;164:259–270.

    CAS  Google Scholar 

  141. Chvapil M, Ryan JN, Zukoski CF. The effect of zinc and other metals on the stability of lysosomes. Proc Soc Exp Biol Med. 1972;140:642–646.

    PubMed  CAS  Google Scholar 

  142. Chvapil M, Ryan JN, Brade Z. Effect selected chelating agents and metals on the stability of lysosomes. Biochem Pharmacol. 1972;21:1097–1105.

    PubMed  CAS  Google Scholar 

  143. Ludwig JC, Chvapil M. Effect of metal ions on lysosomes. In: Rainsford KD, Brune K, Whitehouse MW, eds. Trace Elements in the Pathogenesis and Treatment of Inflammation. Basel: Birkhauser; 1981:65–83.

    Google Scholar 

  144. Berger NA, Skinner AM. Characterisation of lymphocyte transformation induced by zinc ions. Cell Biol. 1974;61:45–55.

    CAS  Google Scholar 

  145. Takeyama Y, Ogino K, Segawa H, Kobayashi H, Uda T, Honbara T. Effects of zinc on production of active oxygen species by rat neutrophils. Pharmacol Toxicol. 1995;76:50–55.

    PubMed  CAS  Google Scholar 

  146. Kashara M, Anraku Y. Succinic-and NADH oxidase system of Escherichia coli membrane vessicles. Mechanism of selective inhibition of the systems of by zinc ions. J Biochem. 1974;76:967–976.

    Google Scholar 

  147. Brewer GJ. Molecular mechanisms of zinc actions on cells. In: Rainsford KD, Brune K, Whitehouse MW, eds. Trace Elements in the Pathogenesis and Treatment of Inflammation. Basel: Birkhäuser; 1981:37–49.

    Google Scholar 

  148. Scuderi P. Differential effects of copper and zinc on human peripheral blood monocyte cytokine secretion. Cell Immunol. 1990;126:391–405.

    PubMed  CAS  Google Scholar 

  149. Driessen C, Hirv K, Kirchner H, Rink L. Zinc regulates cytokine induction by super-antigens and lipopolysaccharide. Immunology. 1995;84:272–277.

    PubMed  CAS  Google Scholar 

  150. Driessen C, Hirv K, Wellinghausen N, Kirchner H, Rink L. Influence of serum on zinc toxic shock syndrome toxic-1, and lipopolysaccharide-induced production of IFNγ-and IL-1β by human mononuclear cells. J Leuk Biol. 1995;57:904–908.

    CAS  Google Scholar 

  151. Santos-Neto L, Tosa CE, Dorea JG. Zinc reverses the increased sensitivity of lymphocytes from aged subjects to the antiproliferative effect of prostaglandin E2. Clin Immunol Immunopathol. 1992;64(3):184–187.

    PubMed  CAS  Google Scholar 

  152. Pernelle JJ, Creuzet C, Loeb J, Gacon G. Phosphorylation of the lymphoid cell kinase p551ck is stimulated by micromolar concentrations of Zn2+. FEBS Lett. 1991;281:278–282.

    PubMed  CAS  Google Scholar 

  153. Zalewski PD, Millard SH, Forbes IJ et al. Video image analysis of labile zinc in viable pancreatic islet cells using a specific fluorescent probe for zinc. J Histochem Cytochem. 1994;42(7):877–884.

    PubMed  CAS  Google Scholar 

  154. Steel L, Cousins RJ Kinetics of zinc absorption by luminally and vascularly perfused rat intestine. Am J Physiol. 1985;248:G46-G53.

    Google Scholar 

  155. Thompson RB, Patchan MW. Lifetime-based fluorescence energy transfer biosensing of zinc. Anal Biochem. 1995;227:123–128.

    PubMed  CAS  Google Scholar 

  156. Hempe JM, Cousins RJ. Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proc Natl Acad Sci USA. 1991;88:9671–9674.

    PubMed  CAS  Google Scholar 

  157. Palmiter RD, Cole TB, Findley SD. ZnT2, a mammalian protein that confers resistance to zinc by facilitating vesicular sequestration. EMBO J. 1996;15:1784–1791.

    PubMed  CAS  Google Scholar 

  158. Woessner JF Jr. Matrix metalloproteinases and their inhibitors in connective tissue remodelling. FASEB J. 1991;5:2145–2154.

    PubMed  CAS  Google Scholar 

  159. Rofe AM, Philcox JC, Coyle P. Trace metal, acute phase and metabolic response to endotoxin in metallothionein-null mice. Biochem J. 1996;314:793–797.

    PubMed  CAS  Google Scholar 

  160. Welunghausen N, Fischer A, Kirchner H, Rink L. Interaction of zinc ions with human peripheral blood mononuclear cells. Cell Immunol. 1996;171:255–261.

    Google Scholar 

  161. Zalewski PD, Forbes IJ, Betts WM. Correlation of apoptosis with change in intracellular labile Zn(II) using Zinquin [(2-methyl-8-p-toluenesulphonamido-6-quinolytoxy)acetic acid], a new specific fluorescent probe for Zn(II). Biochem J. 1993;296:403–408.

    PubMed  CAS  Google Scholar 

  162. Fraker PJ, Osati-Ashtiani F, Wagner BS, King LE. Possible roles for glucocorticoids and apoptosis in the suppression of lymphopoiesis during zinc deficiency: A review. J Am Coll Nutr. 1995;14:11–17.

    PubMed  CAS  Google Scholar 

  163. Bortner CD, Oldenburg NBE, Cidlowski JA. The role of DNA fragmentation in apoptosis. Trends Cell Biol. 1995;5:21–26.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rainsford, K.D., Zeitlin, B. (1998). Zinc in the regulation and therapy of inflammatory diseases and gastrointestinal ulceration. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics