Skip to main content

Copper and zinc metallothioneins

  • Chapter

Abstract

Metallothioneins (MTs) are a family of ubiquitous and unusual proteins which have been receiving extensive interest from chemists and biologists for the last 40 years. The first MT was discovered in 1957 by Margoshes and Vallee [1] in their search for a tissue component responsible for the natural accumulation of cadmium (Cd) in equine renal cortex. MT was so called because of its extremely high metal and sulphur contents. Aside from Cd, this protein binds other metals, especially zinc (Zn) and copper (Cu). Subsequently, researches of MTs have greatly expanded, and their presence has been demonstrated in animals, plants, fungi and cyanobacteria. MTs are characterized by the following chemical properties: (a) low molecular weight; (b) high metal content; (c) characteristic amino acid composition (high cysteine content, no aromatic amino acids); (d) characteristic distribution of cysteinyl residues; (e) spectroscopic features characteristic of metal thiolates, with arrangement of metal ions in clusters [2]. An appreciable number of MT sequences are now available. Because of the variations in their primary structures, especially location of cysteine residues and mode of synthesis, MTs are divided into three classes [2]. Class I comprise polypeptides closely related to the equine renal MT (location of cysteine similar to that of horse kidney). This includes all mammalian MTs including those from other vertebrates studied to date as well as a few from some invertebrates, such as lobster, oyster, and mussel. Class II, comprise polypeptides with location of cysteine only distantly related to that of horse kidney. The 20 known sequences belonging to this class include protists, some invertebrates (such as Drosophilia and sea urchin), cyanobacteria, yeasts and some plants. Their lengths vary from 25–101 residues and lack homology, not only among one another, but also with those of Class I. Class III are atypical MTs that are not proteins, are not translationally synthesized metal-thiolate polypeptides that contain γ-glutamyl cysteinyl units. The class is found in plants and some fungi.

Keywords

  • Growth Inhibitory Factor
  • Metallothionein Gene
  • Metal Response Element
  • Horse Kidney
  • Metallothionein Gene Expression

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-3963-2_5
  • Chapter length: 18 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-3963-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Margoshes M, Vallee BL. A Cd protein from equine renal cortex. J Am Chem Soc. 1957;79:4813–4814.

    CAS  Google Scholar 

  2. Fowler BA, Hildebrand CE, Kojima Y, Webb M. Nomenclature of metallothionein. In: Kägi JHR, Kojima Y, eds. Metallothionein II. Experientia Supplementum. Basel: Birkhäuser Verlag; 1987:19–22.

    Google Scholar 

  3. Kägi JHR. Evolution, structure and chemical activity of class I metallothioneins: an overview. In: Suzuki KT, Imura N, Kimura M, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:29–55.

    Google Scholar 

  4. Hunziker PE, Kägi JHR. Isolation and characterization of six human hepatic isometal-lothioneins. Biochem J. 1985;231:375–382.

    CAS  PubMed  Google Scholar 

  5. Quaife CJ, Findley SD, Erickson JC et al. Induction of a new metallothionein isoform (MT-IV) occurs during differentiation of stratified squamous epithelia. Biochemistry. 1994;33:7250–7259.

    CAS  PubMed  Google Scholar 

  6. Uchida Y, Takio K, Koiti T, Ihara Y, Tomonaga M. The growth inhibitory factor that is deficient in the Alzheimer’s disease brain is a 68 amino acid metallothionein-like protein. Neuron. 1991;7:337–347.

    CAS  PubMed  Google Scholar 

  7. Palmiter RD, Findley SD, Whitmore TE, Durnam DM. MT-III, a brain-specific member of the metallothionein gene family. Proc Natl Acad Sci USA. 1992;89:6333–6337.

    CAS  PubMed  Google Scholar 

  8. Winge DR, Nielson KB, Zeikus RD, Gray WR. Structural characterization of the isoforms of neonatal and adult rat liver metallothionein. J Biol Chem. 1984;259:11419–11425.

    CAS  PubMed  Google Scholar 

  9. Kägi JHR, Shaffer A. Biochemistry of metallothionein. Biochemistry. 1988;27:8509–8515.

    PubMed  Google Scholar 

  10. Kägi JHR. Overview of metallothionein. Meth Enzymol. 1991;205:613–626.

    PubMed  Google Scholar 

  11. Killie P, Hemmings A, Lunney EA. Memories of metallothionein. Biochim Biophys Acta. 1994;1205:151–151.

    Google Scholar 

  12. Winge DR. Copper coordination in metallothionein. In: Kägi JHR, Kojima Y, eds. Metallothionein II. Experientia Supplementum. Basel: Birkhäuser Verlag; 1987;52:213–218.

    Google Scholar 

  13. Presta A, Green AR, Zelazowski A, Stillman MJ. Copper-binding to rabbit liver metallothionein — formation of a continuum of copper(I)-thiolate stoichiometric species. Eur J Biochem. 1995;227:226–240.

    CAS  PubMed  Google Scholar 

  14. Otvos J, Chen S, Liu X. NMR insights into the dynamics of metal interaction with metallothionein. In: Hamer DH, Winge DR, eds. Metal Ion Homeostasis Molecular Biology and Chemistry. UCLA Symposia on Molecular and Cellular Biology New Series, New York: Alan R. Liss, Inc.; 1989;98:197–206.

    Google Scholar 

  15. Zeng J, Vallee BL, Kägi JHR. Zinc transfer from transcription factor IIIA fingers to thionein clusters. Proc Natl Acad Sci USA. 1991;88:9984–9988.

    CAS  PubMed  Google Scholar 

  16. West AK, Stallings R, Hildebrand CE, Chiu R, Karin M, Richards RI. Human metallothionein genes: structure of the functional locus at 16ql3. Genomics. 1990;8:513–518.

    CAS  PubMed  Google Scholar 

  17. Hamer DH. Metallothionein. Annu Rev Biochem. 1986;55:913–951.

    CAS  PubMed  Google Scholar 

  18. Karin M, Haslinger A, Heguy A, Dietlin T, Cooke T. Metal-responsive elements act as positive modulators of human metallothionein-IlA enhancer activity. Mol Cell Biol. 1987;7:606–613.

    CAS  PubMed  Google Scholar 

  19. Karin M, Haslinger A, Holtgreve H et al. Characterization of DNA sequences through which cadmium and glucocorticoid hormones induce human metallothionein-IIA gene. Nature. 1984;308:513–519.

    CAS  PubMed  Google Scholar 

  20. Friedman RL, Stark GR. Alpha-interferon-induced transcription of HLA and metallothionein genes containing homologous upstream sequences. Nature. 1985;314:637–639.

    CAS  PubMed  Google Scholar 

  21. Imagawa M, Chiu R, Karin M. Transcription factor AP-2 mediates induction by two different signal-transduction pathways: protein kinase C and cAMP. Cell. 1987;51:251–260.

    CAS  PubMed  Google Scholar 

  22. Imbra RJ, Karin M. Metallothionein gene expression is regulated by serum factors and activators of protein kinase C. Mol Cell Biol. 1987;7:1358–1363.

    CAS  PubMed  Google Scholar 

  23. Cousins RJ. Metal elements and gene expression. Annu Rev Nutr. 1994;14:449–496.

    CAS  PubMed  Google Scholar 

  24. Schmid CJ, Hamer DH. Cell specificity and an effect of ras on human metallothionein gene expression. Proc Natl Acad Sci USA. 1986;83:3346–3350.

    Google Scholar 

  25. Jahroudi N, Foster R, Price-Haughey J, Beitel G, Gedamu L. Cell-type specific and differential regulation of the human metallothionein genes. J Biol Chem. 1990;265:6506–6511.

    CAS  PubMed  Google Scholar 

  26. Heguy A, West A, Richards R, Karin M. Structure and tissue-specific expression of the human metallothionein IB gene. Mol Cell Biol. 1986;6:2149–2157.

    CAS  PubMed  Google Scholar 

  27. Jahroudi N, Gedamu L. DNA methylation is correlated to regulation of human MT-IF, MT-IG and MT-IIA genes. In: Hamer DH, Winge DR, eds. Metal Ion Homeostasis Molecular Biology and Chemistry. UCLA Symposia on Molecular and Cellular Biology New Series, New York: Alan R. Liss, Inc.; 1989;98:49–57.

    Google Scholar 

  28. Gedamu L, Foster R, Jahroudi N, Samson S, Shworak N, Zafarullah M. Regulation of human and rainbow trout metallothionein genes. In: Suzuki KT, Imura N, Kimura M, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:363–380.

    Google Scholar 

  29. Patenter RD. Regulation of metallothionein genes by heavy metals appears to be mediated by a zinc-sensitive inhibitor that interacts with a constitutively active transcription factor, MTF-1. Proc Natl Acad Sci USA. 1994;91:1219–1223.

    Google Scholar 

  30. Roesijadi G. Metallothionein and its role in toxic metal regulation. Comp Biochem Physiol. 1996;113C:117–123.

    CAS  Google Scholar 

  31. Koizumi S, Otsuka F. Factors involved in the transcriptional regulation of metallothionein genes. In: Suzuki KT, Imura N, Kimura M, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:457–474.

    Google Scholar 

  32. Pountney DL, Fundel SM, Faller P, Bircler NE, Hunziker P, Vašák M. Isolation, primary structures and metal binding properties of neuronal growth inhibitory factor (GIF) from bovine and equine brain. FEBS Lett. 1994;345:193–197.

    CAS  PubMed  Google Scholar 

  33. Bryan RH, Liu J, Choudhuri S, Klaassen CD. Species variation in hepatic metallothionein. Toxicol Lett. 1994;74:23–33.

    Google Scholar 

  34. Bremner I. Nutritional and physiological significance of metallothionein. Meth Enzymol. 1991;205:25–35.

    CAS  PubMed  Google Scholar 

  35. Bremner I, Beattie JH. Metallothionein and the trace minerals. Annu Rev Nutr. 1990;10:63–83.

    CAS  PubMed  Google Scholar 

  36. Sugiura T, Nakamura H. Metallothionein in platelets. Int Arch Allergy Immunol. 1994;103:341–348.

    CAS  PubMed  Google Scholar 

  37. Nartey NO, Banerjee D, Cherian MG. Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of fetal human liver and kidney and its changes during development. Pathology. 1987;19:233–238.

    CAS  PubMed  Google Scholar 

  38. Panemangalore M, Banerjee D, Onosaka S, Cherian MG. Changes in intracellular accumulation and distribution of metallothionein in rat liver and kidney during postnatal development. Dev Biol. 1983;97:95–102.

    CAS  PubMed  Google Scholar 

  39. Bremner I. Involvement of metallothionein in hepatic metabolism of copper. J Nutr. 1987;117:19–29.

    CAS  PubMed  Google Scholar 

  40. Kagi JHR, Vašák M, Lerch K et al. Structure of mammalian metallothionein. Environ Health Perspect. 1984;54:93–103.

    CAS  PubMed  Google Scholar 

  41. Cherian MG. Nuclear and cytoplasmic localization of metallothionein in human liver during development and in tumor cells. In: Suzuki KT, Imura N, Kimura M, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:175–187.

    Google Scholar 

  42. Andrews GK, Adamson ED, Gedamu L. The ontogeny of expression of murine metallothionein: comparison with the α-fetoprotein gene. Dev Biol. 1984;103:294–303.

    CAS  PubMed  Google Scholar 

  43. Cherian MG, Huang PC, Klaassen CD, Liu YP, Longfellow DG, Waalkes MP. National Cancer Institute workshop on the possible roles of metallothionein in carcinogenesis. Cancer Res. 1993;53:922–925.

    CAS  PubMed  Google Scholar 

  44. Kern SR, Smith HA, Fontaine D, Bryan SE. Partitioning of zinc and copper in fetal liver subfractions: appearance of metallothionein-like proteins during development. Toxicol Appl Pharmacol. 1981;59:346–354.

    CAS  PubMed  Google Scholar 

  45. Tsujikawa K, Suzuki N, Sagawa K et al. Induction and subcellular localization of metallothionein in regenerating rat livr. Eur J Cell Biol. 1994;63:240–246.

    CAS  PubMed  Google Scholar 

  46. Day FA, Panemangalore M, Brady FO. In vivo and ex vivo effects of copper on rat liver metallothionein. Proc Soc Exp Biol Med. 1981;168:306–310.

    CAS  PubMed  Google Scholar 

  47. Wake SA, Mercer JFB. Induction of metallothionein mRNA in rat liver and kidney after copper chloride injection. Biochem J. 1985;228:425–432.

    CAS  PubMed  Google Scholar 

  48. Bremner I. Metallothionein and copper metabolism in liver. Meth Enzymol. 1991;205:584–591.

    CAS  PubMed  Google Scholar 

  49. Durnam DM, Palmiter RD. Transcriptional regulation of the mouse metallothionein-I gene by heavy metals. J Biol Chem. 1981;256:5712–5716.

    CAS  PubMed  Google Scholar 

  50. Cizewski Culotta V, Hamer DH. Fine mapping of a mouse metallothionein gene metal response element. Mol Cell Biol. 1989;9:1376–1380.

    Google Scholar 

  51. Chen Y, Saari JT, Kang YJ. Copper deficiency increases metallothionein-I messenger-RNA content selectively in rat liver. J Nutr Biochem. 1995;6:572–576.

    CAS  Google Scholar 

  52. Nielson KB, Winge DR. Preferential binding of copper to the β domain of metallothionein. J Biol Chem. 1984;259:4941–4946.

    CAS  PubMed  Google Scholar 

  53. Hernandez J, Giralt M, Belloso E, Rebollo DV, Romero B, Hidalgo J. Interactions between metallothionein inducers in rat-liver and primary cultures of rat hepatocytes. Chem Biol Interact. 1996;100:27–40.

    CAS  PubMed  Google Scholar 

  54. Sato M, Sasaki M, Hojo H. Induction of metallothionein synthesis by oxidative stress and possible role in acute phase response. In: Suzuki KT, Imura N, Kimura M, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:125–140.

    Google Scholar 

  55. Summer KH, Klein D, De Ruiter N, Abel J. Metallothionein induction by nonsteroidal antiinflammatory drugs. Biol Trace Elem Res. 1989;21:165–169.

    CAS  PubMed  Google Scholar 

  56. Gasull T, Giralt M, Hernandez J et al. Regulation of metallothionein concentrations in rat brain: effect of glucocorticoids, zinc, copper, and endotoxin. Am J Physiol. 1994;266:E760–E767.

    CAS  PubMed  Google Scholar 

  57. Choudhuri S, McKim JM, Klaassen CD. Differential expression of metallothionein gene in liver and brain of mice and rats. Toxicol Appl Pharmacol. 1993; 119:1–10.

    CAS  PubMed  Google Scholar 

  58. Choudhuri S, Kramer KK, Berman NEJ, Dalton TP, Andrews GK, Klaassen CD. Constitutive expression of metallothionein genes in mouse brain. Toxicol Appl Pharmacol. 1995;131:144–154.

    CAS  PubMed  Google Scholar 

  59. Kramer KK, Liu J, Choudhuri S, Klaassen CD. Induction of metallothionein mRNA and protein in murine astrocyte cultures. Toxicol Appl Pharmacol. 1996;136:94–100.

    CAS  PubMed  Google Scholar 

  60. Anstey A, Marks R, Long C et al. In-vivo photoinduction of metallothionein in human skin by ultraviolet-irradiation. J Pathol. 1996;178:84–88.

    CAS  PubMed  Google Scholar 

  61. Kobayashi S, Hirota Y, Sayatosuzuki J et al. Possible role of metallothionein in the cellular defense-mechanism against UVB irradiation in neonatal human skin fibroblasts. Photochem Photobiol. 1994;59:650–656.

    CAS  PubMed  Google Scholar 

  62. Cunningham ML, Johnson JS, Giovanazzi SM, Peak MJ. Photosensitized production of superoxide anion by monochromatic (290–405 nm) ultraviolet irradiation of NADH and NADPH coenzymes. Photochem Photobiol. 1985;42:125–128.

    CAS  PubMed  Google Scholar 

  63. Tamai KT, Gralla EB, Ellerby LM, Valentine JS, Thiele DJ. Yeast and mammalian metallothioneins functionally substitute for yeast copper-zinc superoxide dismutase. Proc Natl Acad Sci USA. 1993;90:8013–8017.

    CAS  PubMed  Google Scholar 

  64. Angel P, Poting A, Mallick U, Rhamsdorf HJ, Schorpp M, Herrlich P. Induction of metallothionein and other mRNA species by carcinogens and tumor promoters in primary human skin fibroblasts. Mol Cell Biol. 1986;6:1760–1766.

    CAS  PubMed  Google Scholar 

  65. Satoh M, Tsuji Y, Watanabe Y et al. Metallothionein content increased in the liver of mice exposed to magnetic-fields. Arch Toxicol. 1996;70:315–318.

    CAS  PubMed  Google Scholar 

  66. Nartey NO, Banerjee D, Cherian MG. Immunohistochemical localization of metallothionein in cell nucleus and cytoplasm of fetal human liver and kidney and its changes during development. Pathology. 1987;19:233–238.

    CAS  PubMed  Google Scholar 

  67. Klaassen CD, Choudhuri S, McKim JM, Lehman-McKeenman LD, Kershaw WC. Degradation of metallothionien. In: Suzuki KT, Imura N, Kimura N, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:207–224.

    Google Scholar 

  68. Feldman SL, Failla ML, Cousins RJ. Degradation of rat liver metallothionein in vitro. Biochim Biophys Acta. 1978;544:638–646.

    CAS  PubMed  Google Scholar 

  69. Bremner I, Mehra RK. Metallothionein: some aspects of its structure and function with special regard with its involvement in copper and zinc metabolism. Chem Sci. 1983;21:117–121.

    CAS  Google Scholar 

  70. Klaassen CD, Lehman-McKeeman LD. Regulation of the isoforms of metallothionein. Biol Trace Elem Res. 1989;21:119–121.

    CAS  PubMed  Google Scholar 

  71. Saito S, Hunziker PE. Differential sensitivity of metallothionein-1 and-2 in liver of zinc-injected rat toward proteolysis. Biochim Biophys Acta. 1996;1289:65–70.

    PubMed  Google Scholar 

  72. Sternlieb I. Hepatic lysosomal copper-thionein. In: Kägi JHR, Kojima Y, eds. Metallothionein II. Basel: Birkhäuser Verlag; 1987:647–653.

    Google Scholar 

  73. Bremner I, Hoekstra WG, Davies NT, Young BW. Effect of zinc status of rats on the synthesis and degradation of copper induced metallothioneins. Biochem J. 1978;174:883–892.

    CAS  PubMed  Google Scholar 

  74. Karin M. Metallothioneins: proteins in search of function. Cell. 1985;41:9–10.

    CAS  PubMed  Google Scholar 

  75. Winge DR, Dameron CT. The metallothionein structural motif involved in metalloregulation. In: Suzuki KT, Imura N, Kimura N, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:381–397.

    Google Scholar 

  76. Richards MP. Recent developments in trace element metabolism and function: role of metallothionein in copper and zinc metabolism. J Nutr. 1989; 119:1062–1070.

    CAS  PubMed  Google Scholar 

  77. Huang PC. Metallothionein structure/function interface. In: Suzuki KT, Imura N, Kimura N, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:407–426.

    Google Scholar 

  78. Maret W. Oxidative metal release from metallothionein via zinc-thiol/disulphide interchange. Proc Natl Acad Sci USA. 1994;91:237–241.

    CAS  PubMed  Google Scholar 

  79. Maret W. Metallothionein disulphide interactions, oxidative stress, and the mobilization of cellular zinc. Neurochem Int. 1995;27:111–117.

    CAS  PubMed  Google Scholar 

  80. Brouwer M, Brouwer-Hoexum T. Interaction of copper-metallothionein from the American lobster, Homarus americanus, with glutathione. Arch Biochem Biophys. 1991;290:207–213.

    CAS  PubMed  Google Scholar 

  81. DaCosta Ferreira AM, Ciriolo MR, Marcocci L, Rotilio G. Copper (I) transfer into metallothionein mediated by glutathione. Biochem J. 1993;292:673–676.

    Google Scholar 

  82. Brouwer M, Hoexum-Brouwer T, Cashon RE. A putative glutathione-binding in CdZn-metallothionein identified by equilibrium binding and molecular-modelling studies. Biochem J. 1993;294:219–225.

    CAS  PubMed  Google Scholar 

  83. Margeli AP, Theocharis SE, Yannacou NN, Spiliopoulou C, Koutselinis A. Metallothionein expression during liver-regeneration after partial hepatectomy in cadmium-pretreated rats. Arch Toxicol. 1994;68:637–642.

    CAS  PubMed  Google Scholar 

  84. Ebadi M, Iversen PL, Hao R et al. Expression and regulation of brain metallothionein. Neurochem Int. 1995;27:1–22.

    CAS  PubMed  Google Scholar 

  85. Masters BA, Quaife CJ, Erickson JC et al. Metallothionein-III is expressed in neurons that sequester zinc in synaptic vesicles. J Neurosci. 1994;14:5844–5857.

    CAS  PubMed  Google Scholar 

  86. Bremner I. Involvement of metallothionein in the regulation of mineral metabolism. In: Suzuki KT, Imura N, Kimura N, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:111–124.

    Google Scholar 

  87. Hempe JM, Cousins RJ. Cysteine-rich intestinal protein and intestinal metallothionein: an inverse relationship as a conceptual model for zinc absorption in rats. J Nutr. 1992;122:89–95.

    CAS  PubMed  Google Scholar 

  88. Blalock TL, Dunn MA, Cousins RJ. Metallothionein gene expression in rats: tissue-specific regulation by dietary copper and zinc. J Nutr. 1988;118:222–228.

    CAS  PubMed  Google Scholar 

  89. Reeves PG. Adaptation responses in rats to long-term feeding of high-zinc diets: emphasis on intestinal metallothionein. J Nutr Biochem. 1995;6:48–54.

    CAS  Google Scholar 

  90. Irato P, Albergoni V, Bertaso C, De Gabrieli R. Interaction between copper and zinc in absorption and metal accumulation in rats. In: Wilken RD, Förstner U, Knöchel A, eds. Proceedings of the 10th International Conference on Heavy Metals in the Environment; 1995 September; Hamburg. Edinburgh, UK: CEP Consultants; 1995;2:240–337.

    Google Scholar 

  91. Irato P, Sturniolo GC, Giacon G et al. Effect of zinc supplementation on metallothionein, copper, and zinc concentration in various tissues of copper-loaded rats. Biol Trace Elem Res. 1996;51:87–96.

    CAS  PubMed  Google Scholar 

  92. Reeves PG, Kerry LR, Bobilya DJ. Zinc-induced metallothionein and copper metabolism in intestinal mucosa, liver, and kidney of rats. Nutr Res. 1994;14:897–908.

    CAS  Google Scholar 

  93. Reeves PG, Rossow KL. Zinc-and/or cadmium-induced intestinal metallothionein and copper metabolism in adult rats. J Nutr Biochem. 1996;7:128–134.

    CAS  Google Scholar 

  94. Hartmann HJ, Felix K, Nagel W, Weser U. Intestinal administration of copper and its transient release into venous rat blood serum concomitantly with metallothionein. Biometals. 1993;6:115–118.

    CAS  PubMed  Google Scholar 

  95. Palida FA, Mas A, Arola L, Bethin K, Lonergan PA, Ettinger MJ. Cytosolic copper-binding proteins in rats and mouse hepatocytes incubated continuously with Cu(II). Biochem J. 1990;268:359–366.

    CAS  PubMed  Google Scholar 

  96. Bremner I. Nutritional and physiological significance of metallothionein. In: Kägi JHR, Kojima Y, eds. Metallothionein II. Experientia Supplementum. Basel: Birkhäuser Verlag; 1987:81–107.

    Google Scholar 

  97. De Lisle RC, Sarras MP, Hidalgo J, Andrews GK. Metallothionein is a component of exocrine pancreas secretion: implications for zinc homeostasis. Am J Physiol. 1996;271:C1103-1110.

    Google Scholar 

  98. Cherian MG, Chan HM. Biological functions of metallothionein — A review. In: Suzuki KT, Imura N, Kimura M, eds. Metallothionein III. Basel: Birkhäuser Verlag; 1993:87–109.

    Google Scholar 

  99. Albergoni V, Piccinni E. Biological response to trace metals and their biochemical effects. In: Leppard GG, ed. Trace Element Speciation in Surface Waters and its Ecological Implications. London: Plenum Publishing Corp.; 1983:159–175.

    Google Scholar 

  100. Tsuji S, Kobayashi H, Uchida Y, Ihara Y, Miyatake T. Molecular cloning of human growth inhibitory factor cDNA and its down-regulation in Alzheimer’s disease. EMBO J. 1992;11:4843–4850.

    CAS  PubMed  Google Scholar 

  101. Moffatt P, Plaa GL, Denizeau F. Rat hepatocytes with elevated metallothionein expression are resistant to N-methyl-N′-nitro-nitrosoguanidine cytotoxicity. Toxicol Appl Pharmacol. 1996;136:200–207.

    CAS  PubMed  Google Scholar 

  102. Kondo Y, Woo ES, Michalska AE, Choo KHA, Lazo JS. Metallothionein null-cells have increased sensitivity to anticancer drugs. Cancer Res. 1995;55:2021–2023.

    CAS  PubMed  Google Scholar 

  103. Lazo JS, Pitt BR. Metallothionein and cell death by anticancer drugs. Annu Rev Pharmacol Toxicol. 1995;35:635–653.

    CAS  PubMed  Google Scholar 

  104. Schwarz MA, Lazo JS, Yalowich JC et al. Metallothionein protects against the cytotoxic and DNA-damaging effects of nitric-oxide. Proc Natl Acad Sci USA. 1995;92:4452–4456.

    CAS  PubMed  Google Scholar 

  105. Cai L, Koropatnick J, Cherian MG. Metallothionein protects DNA from copper-induced but not iron-induced cleavage in vitro. ChemBiol Interact. 1995;96:143–155.

    CAS  Google Scholar 

  106. Abel J, de Ruiter N. Inhibition of hydroxyl-radical-generated DNA degradation by metallothionein. Toxicol Lett. 1989;47:191–196.

    CAS  PubMed  Google Scholar 

  107. Mello-Filho AC, Chubatsu LS, Meneghini R. V79 Chinese hamster cells rendered resistant to high cadmium concentration also become resistant to oxidative stress. Biochem J. 1988;256:475–479.

    CAS  PubMed  Google Scholar 

  108. Mesna OJ, Steffensen IL, Hjertholm H, Andersen RA. Accumulation of metallothionein and its multiple forms by zinc, cadmium and dexamethasone in human peripheral T-lymphocytes and B-lymphocytes and monocytes. Chem Biol Interact. 1995;94:225–242.

    CAS  PubMed  Google Scholar 

  109. Bremner I, Mehra RK, Sato M. Metallothionein in blood, bile and urine. In: Kägi JHR, Kojima Y, eds. Metallothionein II. Experientia Supplementum. Basel: Birkhäuser Verlag; 1987:507–517.

    Google Scholar 

  110. Lynes MA, Garvey JS, Lawrence DA. Extracellular metallothionein effects on lymphocyte activities. Mol Immunol. 1990;27:211–219.

    CAS  PubMed  Google Scholar 

  111. Borghesi LA, Youn J, Olson EA, Lynes MA. Interaction of metallothionein with murine lymphocytes — plasma-membrane binding and proliferation. Toxicology. 1996;108:129–140.

    CAS  PubMed  Google Scholar 

  112. Lynes MA, Borghesi LA, Youn J, Olson EA. Immunomodulatory activities of extracellular metallothionein 1. Metallothionein effects on antibody production. Toxicology. 1993;85:161–177.

    CAS  PubMed  Google Scholar 

  113. Youn J, Borghesi LA, Olson EA, Lynes MA. Immunomodulatory activities of extracellular metallothionein. II. Effects on macrophage functions. J Tox Env Health. 1995;45:3970–4413.

    Google Scholar 

  114. Silver S, Phung LT. Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol. 1996;50:753–789.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Albergoni, V., Piccinni, E. (1998). Copper and zinc metallothioneins. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive