Skip to main content

The biological chemistry of zinc

  • Chapter

Abstract

With about 3 g of zinc in the adult human body, zinc is second to iron in the total mass of the trace elements in human biology [1]. Nevertheless, with the isolation and identification of carbonic anhydrase as a zinc enzyme, its biochemical importance was only recognized in 1939 [2]. The delay in the development of the bioinorganic chemistry of zinc as a field, compared with iron and copper, is attributable to its spectroscopic’ silence’. While complexes of most transition elements are strongly coloured, the electronic structure of Zn2+ renders it colourless and this ion is not amenable to investigation by most spectroscopic methods. This limitation has been overcome by the development of ultrasensitive methods for detection of zinc (with a lower limit of 10-13 g) based on atomic spectroscopy [3] and by techniques of structural biology for the determination of the relationship between macromolecular structure and function such as X-ray crystallography and NMR [3].

Keywords

  • Carbonic Anhydrase
  • Bioinorganic Chemistry
  • Zinc Enzyme
  • Peptide Deformylase
  • Adult Human Body

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-3963-2_4
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-3963-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jackson MJ. Physiology of zinc: general aspects. In: Mills CF, ed. Zinc in Human Biology. Berlin, Heidelberg: Springer-Verlag; 1989:1–14.

    Google Scholar 

  2. Keilin D, Mann T. Carbonic anhydrase. Purification and nature of the enzyme. Biochem J. 1940;34:1163–1176.

    PubMed  CAS  Google Scholar 

  3. Vallee BL, Falchuk KH. The biochemical basis of zinc physiology. Physiol Rev. 1993;73:79–118.

    PubMed  CrossRef  CAS  Google Scholar 

  4. Calvin HI, Hwang FHF, Wohlrab H. Localization of zinc in a dense-fiber-connecting piece fraction of rat sperm tails analogous chemically to hair keratin. Biol Reprod. 1975; 13:228–239.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Sakamoto M, Tzeng S, Fukuyama K, Epstein WL. Light-scattering studies of cation-stimulated filament assembly of newborn rat epidermal keratin. Biochim Biophys Acta. 1980;624:205–210.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Coleman JE. Zinc proteins: enzymes, storage proteins, transcription factors, and replication proteins. Annu Rev Biochem. 1992;61:897–946.

    PubMed  CrossRef  CAS  Google Scholar 

  7. Berg JM, Shi Y. The galvanization of biology: a growing appreciation for the roles of zinc. Science. 1996;271:1081–1085.

    PubMed  CrossRef  CAS  Google Scholar 

  8. Blundell T, Dodson G, Hodgkin D, Mercola D. Insulin: the structure in the crystal and its reflection in chemistry and biology. Adv Protein Chem. 1972;26:279–402.

    CrossRef  CAS  Google Scholar 

  9. Emdin SO, Dodson GG, Cutfield JM, Cutfield SM. Role of zinc in insulin biosynthesis. Some possible zinc-insulin interactions in the pancreatic B-cell. Diabetologia. 1980;19:174–182.

    PubMed  CrossRef  CAS  Google Scholar 

  10. Cunningham BC, Mulkerrin MG, Wells JA. Dimerization of human growth hormone by zinc. Science. 1991;253:545–548.

    PubMed  CrossRef  CAS  Google Scholar 

  11. Somers W, Ultsch M, De Vos AM, Kossiakoff AA. The X-ray structure of a growth hormone-prolactin receptor complex. Nature (London). 1994;372:478–481.

    CrossRef  CAS  Google Scholar 

  12. Castro CE. Nutrient effects on DNA and chromatin structure. Annu Rev Nutr. 1987;7:407–421.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Bettger WJ, O’Dell BL. A critical physiological role of zinc in the structure and function of biomembranes. Life Sci. 1981;28:1425–1438.

    PubMed  CrossRef  CAS  Google Scholar 

  14. Williams RJP. Introduction to bioinorganic chemistry. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Chemistry. New York: Marcel Dekker; 1995:1–20.

    Google Scholar 

  15. Orgel LE. An Introduction to Transition-Metal Chemistry: Ligand-Field Theory. 2nd rev. ed. London, Methuen, New York: Wiley; 1966.

    Google Scholar 

  16. Cotton FA, Wilkinson G. Advanced Inorganic Chemistry. 5th rev. ed. New York: Wiley; 1988.

    Google Scholar 

  17. Bertini I, Briganti F, Scozzafava A. Zinc proteins. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Chemistry. New York: Marcel Dekker; 1995:175–191.

    Google Scholar 

  18. Shannon RD. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. 1976;A32:751–767.

    CAS  Google Scholar 

  19. Glusker JP. Structural aspects of metal liganding to functional groups in proteins. Adv Protein Chem. 1991;42:1–76.

    PubMed  CrossRef  CAS  Google Scholar 

  20. Martin RB. Factors influencing metal ion affinities. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Chemistry. New York: Marcel Dekker; 1995:33–41.

    Google Scholar 

  21. Pearson RG. Hard and soft acids and bases. J Am Chem Soc. 1963;85:3533–3539.

    CrossRef  CAS  Google Scholar 

  22. Christianson DW. Structural biology of zinc. Adv Protein Chem. 1991;42:281–355.

    PubMed  CrossRef  CAS  Google Scholar 

  23. Vallee BL, Auld DS. Zinc coordination, function, and structure of zinc enyzmes and other proteins. Biochemistry. 1990;29:5647–5659.

    PubMed  CrossRef  CAS  Google Scholar 

  24. Berg JM. Metal-binding domains in nucleic acid-binding and gene-regulatory proteins. Prog Inorg Chem. 1989;37:143–185.

    CrossRef  CAS  Google Scholar 

  25. Dunn MF. Catalytic mechanisms in zinc enzymes. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids. Bioinorganic Chemistry. New York: Marcel Dekker; 1995:352–359.

    Google Scholar 

  26. Eigen M. Fast elementary steps in chemical reaction mechanisms. Pure Appl Chem. 1963;6:97–115.

    CrossRef  CAS  Google Scholar 

  27. Stocker W, Grams F, Baumann U et al. The metzincins. Topological and sequential relations between the astacins, adamalysins, serralysins, and matrixins (collagenases) define a super-family of zinc-peptidases. Protein Sci. 1995;4:823–840.

    PubMed  CrossRef  CAS  Google Scholar 

  28. Baker EN, Blundell TL, Cutfield JF et al. The structure of 2Zn pig insulin crystals at 1.5 Å resolution. Philos Trans R Soc Lond B Biol Sci. 1988;319:369–456.

    PubMed  CrossRef  CAS  Google Scholar 

  29. Frankel AD, Berg JM, Pabo CO. Metal-dependent folding of a single zinc finger from transcription factor IIIA. Proc Natl Acad Sci USA. 1987;84:4841–4845.

    PubMed  CrossRef  CAS  Google Scholar 

  30. Rees DC, Lewis M, Lipscomb WN. Refined crystal structure of carboxypeptidase A at 1.54 Å resolution. J Mol Biol. 1983;168:367–387.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Pavletich NP, Pabo CO. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science. 1991;252:809–817.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Dunn MF, MacGibbon AKH, Pease K. Liver alcohol dehydrogenase: electrostatic straindistortion effects facilitate hydride ion transfer. In: Bertini I, Luchinat C, Maret W, Zeppezauer M, eds. Zinc Enzymes. Boston: Birkhäuser; 1986:485–505.

    Google Scholar 

  33. Meinnel T, Blanquet S, Dardel F. A new subclass of the zinc metalloproteases superfamily revealed by the solution structure of peptide deformylase. J Mol Biol. 1996;262:375–386.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Vallee BL, Auld DS. New perspectives on zinc biochemistry: cocatalytic sites in multi-zinc enzymes. Biochemistry. 1993;32:6493–6500.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Bertini I, Luchinat C, Rosi M, Sgamellotti A, Tarantelli F. pKa of zinc-bound water and nucleophilicity of hydroxo-containing species. Ab Initio calculations on models for zinc enzymes. Inorg Chem. 1990;29:1460–1463.

    CrossRef  CAS  Google Scholar 

  36. Vallee BL, Auld DS. Zinc: biological functions and coordination motifs. Acc Chem Res. 1993;26:543–551.

    CrossRef  CAS  Google Scholar 

  37. Groves JT, Olson JR. Models of zinc-containing proteases. Rapid amide hydrolysis by an unusually acidic Zn2+-OH2 complex. Inorg Chem. 1985;24:2715–2717.

    CrossRef  CAS  Google Scholar 

  38. Schwabe JWR, Klug A. Zinc mining for protein domains. Nat Struct Biol. 1994;1:345–349.

    PubMed  CrossRef  CAS  Google Scholar 

  39. Schmeichel KL, Beckerle MC. The LIM domain is a modular protein-binding interface. Cell. 1994;79:211–219.

    PubMed  CrossRef  CAS  Google Scholar 

  40. Hommel U, Zurini M, Luyten M. Solution structure of a cysteine rich domain of rat protein kinase C. Nat Struct Biol. 1994;1:383–387.

    PubMed  CrossRef  CAS  Google Scholar 

  41. Brader ML, Dunn MF. Insulin hexamers: new conformations and applications. Trends Biochem Sci. 1991;16:341–345.

    PubMed  CrossRef  CAS  Google Scholar 

  42. Matthews BW. Structural basis of the action of thermolysin and related zinc peptidases. Acc Chem Res. 1988;21:333–340.

    CrossRef  CAS  Google Scholar 

  43. Holmes MA, Matthews BW. Structure of thermolysin refined at 1.6 Å resolution. J Mol Biol. 1982;160:623–639.

    PubMed  CrossRef  CAS  Google Scholar 

  44. Christiansen DW, Lipscomb WN. Carboxypeptidase A. Acc Chem Res. 1989;22:62–69.

    CrossRef  Google Scholar 

  45. Springman EB, Angleton EL, Birkedal-Hansen H, Van Wart HE. Multiple modes of activation of latent human fibroblast collagenase: evidence for the role of a Cys73 active-site zinc complex in latency and a “cysteine switch” mechanism for activation. Proc Natl Acad Sci USA. 1990;87:364–368.

    PubMed  CrossRef  CAS  Google Scholar 

  46. Spurlino JC, Smallwood AM, Carlton DD et al. 1.56 Å structure of mature truncated human fibroblast collagenase. Proteins. 1994;19:98–109.

    PubMed  CrossRef  CAS  Google Scholar 

  47. Grams F, Dive V, Yiotakis A et al. Structure of astacin with a transition-state analogue inhibitor. Nat Struct Biol. 1996;3:671–675.

    PubMed  CrossRef  CAS  Google Scholar 

  48. Browner MF, Smith WW, Castelhano AL. Matrilysin-inhibitor complexes: common themes among metalloproteases. Biochemistry. 1995;34:6602–6610.

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Rahuel-Clermont, S., Dunn, M.F. (1998). The biological chemistry of zinc. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive