Skip to main content

Regulation by copper of rat adjuvantarthritis: a model of chronic inflammation especially suitable for studying the mechanisms of copper anti-inflammatory activity

  • Chapter
  • 100 Accesses

Abstract

Although nowadays ignored by clinicians, the use of copper in medicine has been a common practice for thousands of years, and the intuitive reasoning of its importance as an ‘exogenous’ anti-inflammatory agent dates back to the classic Roman age as clearly expressed, for the first time, in the Celsus’ medical book De Medicina [1]. Modern biomedical research has confirmed Celsus’ intuition, also discovering that the so-called ‘endogenous” copper (i.e. the metal naturally contained in the body) plays an important role in modulating the inflammatory response. In fact, the hypotheses which seem possible to outline on the basis of our knowledge today suggest that: (a) endogenous copper may act as part of the physiological ‘anti-inflammatory’ replay triggered by the organism to keep inflammation under proper control [2,3]; (b) the inflammation is a state in which more copper is demanded and accumulated by the organism to face the inflammatory noxa [4,5]; and (c) although inflammation is per se able to cause an increase in the amount of endogenous copper, this defensive response could be somehow insufficient to effectively control the inflammatory reaction, as suggested by the fact that copper preparations have remarkable anti-inflammatory and antiarthritic properties [6,7].

Keywords

  • Flame Atomic Absorption Spectroscopy
  • Adjuvant Arthritis
  • Arthritic Score
  • Alimentary Treatment
  • Copper Carbonate

These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-94-011-3963-2_10
  • Chapter length: 13 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   129.00
Price excludes VAT (USA)
  • ISBN: 978-94-011-3963-2
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   169.99
Price excludes VAT (USA)
Hardcover Book
USD   249.00
Price excludes VAT (USA)

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neuberger M. History of Medicine. London: Bedford Medical Publications; 1910:32–54.

    Google Scholar 

  2. Sorenson JRJ. Evaluation of copper complexes as potential anti-arthritic drugs. J Pharm Pharmacol. 1977;29:450–452.

    PubMed  CrossRef  CAS  Google Scholar 

  3. Milanino R, Passarella E, Velo GP. Copper and the inflammatory process. In: Weissman G, Samuelsson B, Paoletti R, eds. Advances in Inflammation Research. Vol. 1. New York: Raven Press; 1979:281–291.

    Google Scholar 

  4. Milanino R, Marrella M, Moretti U, Concari E, Velo GP. Copper and zinc status in rats with acute inflammation: focus on the inflamed area. Agents Actions. 1988;24:356–364.

    PubMed  CrossRef  CAS  Google Scholar 

  5. Milanino R, Moretti U, Concari E, Marrella M, Velo GP. Copper and zinc status in adjuvant arthritic rats: studies on blood, liver, kidneys, spleen and inflamed paws. Agents Actions. 1988;24:365–376.

    PubMed  CrossRef  CAS  Google Scholar 

  6. Sorenson JRJ. Copper complexes offer a physiological approach to the treatment of chronic diseases. In: Ellis GP, West GB, eds. Progress in Medicinal Chemistry. Vol. 26. Amsterdam: Elsevier Science Publishing; 1989:437–568.

    Google Scholar 

  7. Milanino R, Velo GP, Marrella M. Copper and zinc in the pathophysiology and treatment of inflammatory disorders. In: Neve J, Chappuis P, Lamand M, eds. Therapeutic Uses of Trace Elements. New York: Plenum Publishing Corporation; 1996:115–126.

    Google Scholar 

  8. Huber W, Menander-Huber KB, Saifer MGP, Dang PH-C. Studies on the clinical and laboratory pharmacology of drug formulations of bovine Cu-Zn superoxide dismutases (orgotein). In: Willoughby DA, Giroud JP, Velo GP, eds. Perspectives in Inflammation. Lancaster: MTP Press; 1977:527–540.

    CrossRef  Google Scholar 

  9. Laroche MJ, Chappuis P, Henry Y, Rousselet F. Ceruloplasmin: experimental anti-inflammatory activity and physicochemical properties. In: Sorenson JRJ, ed. Inflammatory Diseases and Copper. Clifton: Humana Press; 1982:61–70.

    CrossRef  Google Scholar 

  10. Jackson GE, May PM, Williams DR. Metal-ligand complexes involved in rheumatoid arthritis. I. Justification for copper administration. J Inorg Nucl Chem. 1978;40:1189–1194.

    CrossRef  CAS  Google Scholar 

  11. Korolkiewicz Z, Hac E, Gagalo I, Gorczyca P, Lodzinska A. The pharmacological activity of complexes and mixtures with copper and salicylate or aminopyrine following oral dosing in rats. Agents Actions. 1989;26:355–359.

    PubMed  CrossRef  CAS  Google Scholar 

  12. Beveridge SJ, Walker WR, Whitehouse MW. Anti-inflammatory activity of copper salicylates applied to rats percutaneously in dimethyl-sulphoxide with glycerol. J Pharm Pharmacol. 1980;32:425–427.

    PubMed  CrossRef  CAS  Google Scholar 

  13. Hangarter W. Copper-salicylate in rheumatoid arthritis and similar degenerative diseases. In: Sorenson JRJ, ed. Inflammatory Diseases and Copper. Clifton: Humana Press; 1982:439–449.

    CrossRef  Google Scholar 

  14. Sorenson JRJ. Copper chelates as possible active forms of the antiarthritic agents. J Med Chem. 1976;19:135–148.

    PubMed  CrossRef  CAS  Google Scholar 

  15. Beveridge SJ, Whitehouse MW, Walker WR. Lipophilic copper(II) formulations: some correlation between their composition and the anti-inflammatory/anti-arthritic activity when applied to the skin of rats. Agents Actions. 1982;12:225–231.

    PubMed  CrossRef  CAS  Google Scholar 

  16. Milanino R, Concari E, Conforti A et al. Synthesis and anti-inflammatory effects of some bis(2-benzimidazolyl)thioeters and their copper (II) chelates, orally administered to rats. Eur J Med Chem. 1988;23:217–224.

    CrossRef  CAS  Google Scholar 

  17. Whitehouse MW, Walker WR. Copper and inflammation. Agents Actions. 1978;8:85–90.

    PubMed  CrossRef  CAS  Google Scholar 

  18. Brown DH, Smith WE, Teape JW, Lewis AJ. Anti-inflammatory effect of some copper complexes. J Med Chem. 1980;23:729–734.

    PubMed  CrossRef  CAS  Google Scholar 

  19. Moretti U, Marrella M, Pasqualicchio M, Milanino R, Velo GP. Copper and zinc in inflammatory process. Pharmacol Res. 1990;22:345.

    CrossRef  Google Scholar 

  20. Dollwet HHA, Schimdt SP, Seeman RE. Anti-inflammatory properties of copper implants in the rat paw oedema: a preliminary study. Agents Actions. 1981; 11:746–749.

    PubMed  CrossRef  CAS  Google Scholar 

  21. Perrin DD, Whitehouse MW. Metal ion therapy: some fundamental consideration. In: Rainsford KD, Brune K, Whitehouse MW, eds. Trace Elements in the Pathogenesis and Treatment of Inflammation. Basel: Birkhäuser Verlag; 1981:261–290.

    Google Scholar 

  22. Underwood EJ. Trace elements in human and animal nutrition. 4th rev. edn. New York: Academic Press; 1977:56–108.

    Google Scholar 

  23. Williams DR, Furnival C, May PM. Computer analysis of low molecular weight copper complexes in biofluids. In: Sorenson JRJ, ed. Inflammatory Diseases and Copper. Clifton, NJ: Humana Press; 1982:45–56

    CrossRef  Google Scholar 

  24. Cristofori P, Terron A, Marrella M et al. Copper supplementation in the rat: Preliminary observations on the clinical, hematological and histopathological profile. Agents Actions. 1992;(Special Conference Issue):C118-120.

    Google Scholar 

  25. Conforti A, Franco L, Milanino R, Totorizzo A, Velo GP. Copper metabolism during acute inflammation: studies on liver and serum copper concentrations in normal and inflamed rats. Br J Pharmacol. 1983;79:45–52.

    PubMed  CrossRef  CAS  Google Scholar 

  26. Marrella M, Milanino R. Simple and reproducible method for acid extraction of copper and zinc from rat tissue for determination by flame atomic absorption spectroscopy. Atomic Spectrosc. 1986;7:40–42.

    CAS  Google Scholar 

  27. Scheinberg IH, Sternlieb I. Wilson’ disease. Vol. XXIII. In the series: Smith LH Jr, ed. Major Problems in Internal Medicine. Philadelphia: WB Saunders; 1984:38–105.

    Google Scholar 

  28. Van Campen DR. Copper interference with the intestinal absorption of 65Zn by rats. J Nutr. 1969;97:104–108.

    PubMed  Google Scholar 

  29. Brewer CJ, Hill GM, Prasad AS, Cossack ZT, Rabbani PI. Oral zinc therapy for Wilson’s disease. Ann Intern Med. 1983;99:314–320.

    PubMed  CAS  Google Scholar 

  30. Rainsford KD. Adjuvant polyarthritis in rats: is this a satisfactory model for screening antiarthritic drugs? Agents Actions. 1982;12:452–458.

    PubMed  CrossRef  CAS  Google Scholar 

  31. Milanino R, Marrella M, Gasperini R, Pasqualicchio M, Velo GP. Copper and zinc body levels in inflammation: an overview of the data obtained from animal and human studies. Agents Actions. 1993;39:195–209.

    PubMed  CrossRef  CAS  Google Scholar 

  32. Roch-Arveiller M, Pham Huy D, Maman L, Giroud JP, Sorenson JRJ. Non-steroidal antiinflammatory drug-copper complex modulation of polymorphonuclear leukocyte migration. Biochem Pharmacol. 1990;39:569–574.

    PubMed  CrossRef  CAS  Google Scholar 

  33. Auclair C, Gautero H, Boivin P. Effects of salicylate-copper complex on the metabolic activation of phagocytozing granulocites. Biochem Pharmacol. 1980;29:3105–3109.

    PubMed  CrossRef  CAS  Google Scholar 

  34. Roch-Arveiller M, Revelant V, Pham Huy D et al. Effects of some non-steroidal antiinflammatory drug copper complexes on polymorphonuclear leukocyte oxidative metabolism. Agents Actions. 1990;31:65–71.

    PubMed  CrossRef  CAS  Google Scholar 

  35. Scuderi P. Differential effects of copper and zinc on human peripheral blood monocyte cytokine secretion. Cell Immunol. 1990;126:391–405.

    PubMed  CrossRef  CAS  Google Scholar 

  36. Pasqualicchio M, Davies ME, Velo GP. Effects of copper and zinc on chondrocyte-mononuclear cell adhesion via ICAM-1 /CD1 8 interactions. Inflammopharmacology. 1995;3:35–48.

    CrossRef  CAS  Google Scholar 

  37. Baquial JGL, Sorenson JRJ. Down-regulation of NADPH-diaphorase (nitric oxide synthase) may account for the pharmacological activities of Cu(II)2(3,5-diisopropylsalicylate)4. J Inorg Biochem. 1995;60:133–148.

    PubMed  CrossRef  CAS  Google Scholar 

  38. Milanino R, Moretti U, Marrella M, Pasqualicchio M, Gasperini R, Velo GP. Copper and zinc in the development and control of inflammation. In: Berthon G, ed. Handbook of Metal-Ligand Interactions in Biological Fluids: Bioinorganic Medicine. Vol. 2. New York: Marcel Dekker Inc.; 1995:886–899.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Milanino, R., Marrella, M., Velo, G.P., Cristofori, P., Terron, A. (1998). Regulation by copper of rat adjuvantarthritis: a model of chronic inflammation especially suitable for studying the mechanisms of copper anti-inflammatory activity. In: Rainsford, K.D., Milanino, R., Sorenson, J.R.J., Velo, G.P. (eds) Copper and Zinc in Inflammatory and Degenerative Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3963-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3963-2_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5757-8

  • Online ISBN: 978-94-011-3963-2

  • eBook Packages: Springer Book Archive