Effect of Elevated Air CO2 Concentration on the CO2 Assimilation of Winter Wheat

  • N. Harnos
  • K. Szente
  • Z. Tuba
Chapter

Abstract

Increasing number of experiments have been carried out since the seventies to analyse the effect of elevated air CO2 concentration on wheat (1, 2, 3). It was found that the photosynthetic rate of plants grown at higher CO2 concentrations was more intense, while the transpiration rate decreased compared to plants grown in our present day CO2 level, leading to a better water use efficiency (2), a greater amount of biomass and, in many cases, to higher yields (4). Although elevated atmospheric CO2 increases the photosynthesis and growth of C3 plants, the magnitude of this increase is very difficult to predict. Simulation models would be able to describe the effects of high CO2 on photosynthesis, but the contradictory results obtained in a vast number of studies nevertheless raises the question of how photosynthesis can be predicted without having to carry out the measurements.

Key words

acclimation rubisco capacity modelling CO2 assimilation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Krenzer, E.G. and Moss, D.N. (1975): Crop Science, 15, 71–74CrossRefGoogle Scholar
  2. 2.
    Tuba, Z., Szente, K. and Koch, J. (1994): Journal of Plant Physiology, 144 (6), 669–678CrossRefGoogle Scholar
  3. 3.
    Wheeler, T.R., Hong, T.D., Ellis, R.H., Batts, G.R., Morison, J.I.L. and Hadley, P. (1996): Journal of Experimental Botany, 47 (298), 623–630CrossRefGoogle Scholar
  4. 4.
    Hamos, N., Veisz, O. and Tiscliner, T. (1998) Acta Agronomica Hungarica, 46 (1), 15–24Google Scholar
  5. 5.
    Farquhar, G.D., von Caemmerer, S. and Berry, J.A. (1980) Planta 149, 78–90CrossRefPubMedGoogle Scholar
  6. 6.
    Farquhar, G.D. and von Caemmerer, S. (1982) in Physiological plant ecology II. New Ser. Vol. 12B. Encyclopedia of plant phys. (Lang O.L. et al., ed.) pp. 549–587, Springer-Verlag, BerlinCrossRefGoogle Scholar
  7. 7.
    von Caemmerer, S. and Farquhar, G.D. (1981) Planta 153, 376–387CrossRefPubMedGoogle Scholar
  8. 8.
    Boote, K.J. and Loomis, R.S. (1991) in Modeling Crop Photosynthesis -from Biochemistry to Canopy. CSSA Special Publication no. 19. (Boote, K.J. and Loomis, R.S., Eds ) pp. 109–140Google Scholar
  9. 9.
    Long, S.P. and Drake, B.G. (1992) in Crop Photosynthesis: spatial and temporal determinants (Baker N.R., Thomas H., eds) pp. 69–103, Elseviel Sci. Publishers B.V.CrossRefGoogle Scholar
  10. 10.
    Campbell, W.J., Allen Jr., L.H. and Bowes, G. (1990) J. Exp. Bot. 41, 427–433CrossRefGoogle Scholar
  11. 11.
    Vu J.C.V, Allen Jr., L.H. and Bowes, G. (1989) Environ. Exp. Bot. 29, 141–147CrossRefGoogle Scholar
  12. 12.
    Rowland-Bamford, A.J., Baker, J.T., Hartwell, A. and Bowes, G. (1991) Plant Cell Environ. 14, 557–587CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • N. Harnos
    • 1
  • K. Szente
    • 2
  • Z. Tuba
    • 2
  1. 1.Agricultural Research Institute of the Hungarian Academy of SciencesMartonvásárHungary
  2. 2.Dept. of Botany and Plant PhysiologyUniversity of Agricultural SciencesGödöllõHungary

Personalised recommendations