Adaptation of Chlamydomonas Reinhardtii to Limiting CO2 Conditions

  • James V. Moroney
  • Mark D. Burow
  • Zhi-Yuan Chen
  • Olga N. Borkhsenious
  • Catherine B. Mason
  • Aravind Somanchi
Chapter

Abstract

The unicellular green alga Chlamydomonas reinhardtii can adapt to limiting CO2 conditions through the action of a CO2 concentrating mechanism (CCM). When grown on elevated CO2 (10 to 100 times ambient levels of CO2), C. reinhardtii exhibits relatively poor affinity for external inorganic carbon. However if cells grown on elevated CO2 are switched to low CO2 conditions (ambient levels of C2 the alga will adapt to the limiting CO2 environment within four hours. During this adaptation a number of new proteins are synthesized and significant morphological changes occur. We have found that over 90% of the Rubisco within the cell is localized to the pyrenoid when cells are grown on low CO2 conditions. In contrast, in cells grown on elevated CO2 a majority of the Rubisco (60%) is found in the chloroplast stroma. In addition to the redistribution of Rubisco, messages encoding three isoforms of carbonic anhydrase, a cyclophilin and three novel membrane proteins increase under low CO2 conditions. The sequence of one of these novel cDNAs named lci2, will be reported here.

Keywords

CO2 concentrating mechanism Chlamydomonas gene regulation pyrenoid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chen Z.-Y., Lavigne L.L., Mason C.B. and Moroney J.V. (1997) Plant Physiol. 114:265–273CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Henk M.C., Rawat M., Hugghins S.Y., Lavigne L.L., Ramazanov Z., Mason C.B. and Moroney J.V. (1995) in Photosynthesis: from Light to Biosphere, Vol. V. (Mathis P., ed.) pp. 595–598, Kluwer Academic Press, Dordrecht, The NetherlandsGoogle Scholar
  3. 3.
    Borkhsenious O.N., Mason C.B. and Moroney J.V. (1997) Plant Physiol. 116:1585–1591CrossRefGoogle Scholar
  4. 4.
    Schroeder M.R., Borkhsenious O.N., Matsuoka K. and Raikhel N.V. (1993) Plant Physiol. 101:451–458CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Sambrook J., Fritsch E.F. and Maniatis T. (1989) Molecular Cloning: a laboratory Manual. Cold Spring Harbor Laboratory press, Cold Spring Harbor, NYGoogle Scholar
  6. 6.
    Moroney J.V. and Chen Z.-Y. (1998) Can. J. Bot. (in press)Google Scholar
  7. 7.
    Morita E., Kuroiwa H., Kuroiwa T. and Nozaki H. (1997) J. Phycol. 33:68–72CrossRefGoogle Scholar
  8. 8.
    Burow M.D., Chen Z.-Y., Mouton T.M. and Moroney J.V. (1996) Plant Mol. Biol. 31:443–448CrossRefPubMedGoogle Scholar
  9. 9.
    Ishikawa T., Sakai K., Yoshimura K., Takeda T. and Shigeoka S. (1996) FEBS Lett. 384: 289–293CrossRefPubMedGoogle Scholar
  10. 10.
    Michalowski C.B., Quigley-Landreau F. and Bohnert, H.J. (1998) Accession AF069315Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • James V. Moroney
    • 1
  • Mark D. Burow
    • 1
  • Zhi-Yuan Chen
    • 1
  • Olga N. Borkhsenious
    • 1
  • Catherine B. Mason
    • 1
  • Aravind Somanchi
    • 1
  1. 1.Department of Biological SciencesLouisiana State UniversityBaton RougeUSA

Personalised recommendations