Analysis of Bacteriochlorophylls in Zinc-Containing Bacteriochlorophyll Producing Acidophilic Bacterium, Acidiphilium Rubrum, by High-Performance Liquid Chromatography

  • Tatsuru Masuda
  • Miho Nagayama
  • Kazuhito Inoue
  • Hiroyuki Ohta
  • Hiroshi Shimada
  • Ken-ichiro Takamiya
Chapter

Abstract

All known photosynthetic organisms possess magnesium-containing tetrapyrroles, namely chlorophylls and bacteriochlorophylls (Bchls), for light harvest and energy-generating charge separation. Very recently, one exception was found in the purple bacterium, Acidiphilium rubrum, which possesses zinc-containing Bchl a (Zn-Bchl a) as its major photosynthetic pigments [1]. This finding modifies our common understanding that the naturally occurring chlorophylls and BchIs ubiquitously have a chelated magnesium atom at the center of macrocyclic ring. Zinc porphyrin derivatives are usually more stable than Mg-derivatives, and have been widely used in the studies of artificial photosynthesis [2]. All known species of the genus Acidiphilium are chemoheterotrophic aerobes and extreme acidophilic bacteria showing optimum pH for growth at around 3.0, and belong to the α-subclass of Proteobacteria that includes many of typical Bchl-utilizing photosynthetic bacteria [3]. Therefore, it is most likely that Acidiphilium species utilize Zn-Bchl instead of acid-labile Bchl in order to adapt their acidic environment, rather than they are evolutional ancestor of magnesium-containing Bchl-utilizing photosynthesis. Thus, an elucidation of Zn-Bchl a biosynthetic pathway in Acidiphilium species may provide insights as to how these bacteria adapt their photosynthesis by modulating a central metal of tetrapyrrole ring.

Key word

Acidiphilium Bchl Chi biosynthesis HPLC pH-dependence Zn-Bchl 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    Wakao, N., Yokoi, N. Isoyama, N., Hiraishi, A., Shimada, K., Kobayashi, M., Kise, H., Iwaki, M., Itoh, S., Takaichi, S. and Sakurai, Y. (1996) Plant Cell Physiol. 37, 889–893CrossRefGoogle Scholar
  2. [2]
    Wasielewski, M.R. and Niemczyk, M.P. (1984) J. Amer. Chem. Soc. 106, 5043–5045CrossRefGoogle Scholar
  3. [3]
    Kishimoto, N., Kosako, Y., Wakao, N., Tano, T. and Hiraishi, A. (1995) Syst. Appl. Microbiol. 18, 85–91CrossRefGoogle Scholar
  4. [4]
    Shioi, Y., Watanabe, K., Takamiya, K., Garrido, J.L., Zapata, M. (1995) Anal. Biochem. 231, 225–229CrossRefPubMedGoogle Scholar
  5. [5]
    Wakao, N., Shiba, T., Hiraishi, A., Ito, M. and Sakurai, Y. (1993) Curr. Microbiol. 27, 277–279CrossRefGoogle Scholar
  6. [6]
    Shimada, H., Wada, T., Handa, H., Ohta, H., Mizoguchi, H., Nishimura, K., Masuda, T., Shioi, Y. and Takamiya, K. (1996) Plant Cell Physiol. 37, 515–522CrossRefPubMedGoogle Scholar
  7. [7]
    Belanger, F.C. and Rebeiz, C.A. (1980) J. Biol. Chem. 255, 1266–1272PubMedGoogle Scholar
  8. [8]
    Buehler, J.W. (1978) in The Porphyins (Dolphin, D., ed.) pp. 389–483, Academic Prss, New York, USACrossRefGoogle Scholar
  9. [9]
    Hartwich, G., Fiedor, L., Simonin, I., Cmiel, E., Schafer, W., Noy, D., Scherz, A. and Scheer, H. (1998) J. Amer. Chem. Soc. 120, 3675–3683CrossRefGoogle Scholar
  10. [10]
    Nagashima, K.V.P., Matsuura, K., Wakao, N., Hiraishi, A. and Shimada, K. (1997) Plant Cell Physiol. 38, 1249–1258CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Tatsuru Masuda
    • 1
  • Miho Nagayama
    • 1
  • Kazuhito Inoue
    • 2
  • Hiroyuki Ohta
    • 1
  • Hiroshi Shimada
    • 1
  • Ken-ichiro Takamiya
    • 1
  1. 1.Dept. Biol. Sci., Fac. Biosci. Biotechnol., Tokyo Inst. Technol.YokohamaJapan
  2. 2.Fac. Sci., Kanagawa Univ.HiratsukaJapan

Personalised recommendations