The Wheat Thylakoid Lipid Content Affected by Heat

  • M. M. Musienko
  • N. Yu. Taran
  • A. A. Okanenko


Plants are impacted by unfavourable factors of the environment — drought, heat, frost etc. on the significant areas of different soil climatic regions of Europe. On solving the problem of physiological and biochemical mechanisms of plant acclimation and resistance, special emphasis is laid on the physical properties of photosynthetic membranes, their ability to provide the conditions needed for normal functioning enzymes and proteins — carrier of electrons(1, 2). Lipids in interaction with sterols, carotenoids and proteins are substances determining molecular structure, physical and chemical properties, and functional activity of membranes (3). Particularly in the chloroplast membranes, it could be advantageous to regulate lipid composition in response to environmental changes because it is shown that functional activities of these membranes depend upon their physical state A set of experiments indicated that high temperature action induced changes dependent upon the resistance of plants, heat exposure, and humidity of soil and air (4, 5).

Key words

adaptation chlorophylls heat stress lipids sterols glycolipids 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Berry, J. and Bjorkman, O. (1980) Ann.Rew. of Plant Physiol. Palo Alto. California. 31, 491–543CrossRefGoogle Scholar
  2. 2.
    Musienko, M. (1995) Photosynthesis. 247 p. Vischa Shcola, Kyiv, UkraineGoogle Scholar
  3. 3.
    Quinn, P.J. and Williams, J.P. (1983) Biochim. Biophys. Acta. 737, 223–266CrossRefGoogle Scholar
  4. 4.
    Okanenko, A., Taran N., Musienko M.,etc. (1994) Ukr. Biochem. J. 66, 94–98Google Scholar
  5. 5.
    Musienko, M., Taran, N., Okanenko, A. (1995) in Botany and Mycology for the Next Millenium (Wasser S.P.,ed.) pp. 272–281, NASU, Kyiv, UkraineGoogle Scholar
  6. 6.
    Pearcy, R. (1978) Plant Physiol. 61, 484–486CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Guillot-Salomon, T., Bahl, J., Ben-Rais, L.,etc. (1991) Plant Physiol. Biochem. 29, 667–679Google Scholar
  8. 8.
    Siefermann-Harms, D., Ninnermann, H., Yamamoto, H. (1987) Biochim. et Biophys. Acta. 892, 303–313Google Scholar
  9. 9.
    Yamamoto, H. (1980) in Instrumental HPTLC (Bertch W. and Raser R., ed.) pp.367–384, New YorkGoogle Scholar
  10. 10.
    Pick,U., Weiss, M., Gounaris, K. (1987) Biochim. Biophys. Acta 891, 28–32CrossRefGoogle Scholar
  11. 11.
    Gounaris, K., Brain, A., Quinn, P., etc. (1983) FEBS Let. 153, 47–52CrossRefGoogle Scholar
  12. 12.
    Dubacq, J-P., Tremolieres, A. (1983) Physiol.Veg. 21, 293–312Google Scholar
  13. 13.
    Horvath, G., Droppa, M., Hideg, E., etc. (1989) Journ. of Phytochem. and Photobiol. 3, 515–527CrossRefGoogle Scholar
  14. 14.
    Folly, A. and Harwood, J. (1982) in Biochemistry and Metabolism of Plant Lipids (Wintermans, J., Kuiper, P., eds.) pp. 331–334, Elsevier, AmsterdamGoogle Scholar
  15. 15.
    Tremolieres, A., Remy, R., Ambard-Bretteville, etc. (1984) in Developmants in Plant Biology, 9: Structure, Function and Metabolism of Plant Lipids (Siegenthaler P.A., Eichenberger, W., eds.), Elsevier, Amsterdam, 429–432.Google Scholar
  16. 16.
    Orr G., Raison J. (1987) Plant Physiol. 84, 88–92CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Gounaris, K., Chapman, D., Barber J. (1988) Pl. Membr. Struct., Assem. & Funct. Meet. Phytochem. Soc. Eur., Membr. Group Biochem. Soc. Exp. Biol., Cardiff, Apr., 1988, London. 169–172Google Scholar
  18. 18.
    Quartacci, M., Pinzino, C., Sgherri, C.,etc. (1995) Plant Physiol. 108, 191–197CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • M. M. Musienko
    • 1
  • N. Yu. Taran
    • 1
  • A. A. Okanenko
    • 1
  1. 1.National Taras Shevchenko UniversityKyivUkraine

Personalised recommendations