Skip to main content

Xanthophylls and Excess-Energy Dissipation: A Genetic Dissection in Arabidopsis

  • Chapter
Photosynthesis: Mechanisms and Effects

Abstract

Thermal dissipation of excess absorbed light energy is considered to play a key role in regulating light harvesting and electron transport, and to prevent photodamage to the photosynthetic apparatus (1, 2, 3). This harmless dissipation is triggered by an increase in the light-driven ΔpH across the thylakoid membrane and is thought to take place primarily in the light-harvesting complexes associated with PSII. Non-photochemical quenching of chlorophyll fluorescence (NPQ) is widely used as a measure of, and often as a synonym for, this dissipation process. ΔpH-dependent NPQ is usually by far the predominant component of the total NPQ, but other processes such as state changes and photodamage can also cause decreases in PSII fluorescence yield and thus contribute to the measured apparent NPQ. An estimate of their contribution can usually be obtained from the component that fails to relax upon removal of the light-driven proton gradient.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Horton, P., Ruban, A. V. and Walters, R. G. (1996) Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 655–684

    Article  CAS  PubMed  Google Scholar 

  2. Demmig-Adams, B. and Adams, W. W., III (1996) Trends Plant Sci. 1, 21–26

    Article  Google Scholar 

  3. Gilmore, A. M. (1997) Physiol. Plant. 99, 197–209

    Article  CAS  Google Scholar 

  4. Bilger, W. and Björkman, O. (1994) Planta 193, 238–246

    Article  CAS  Google Scholar 

  5. Frank, H. A., Cua, A., Chynwat, V., Young, A., Gosztola, D. and Wasielewski, M. R. (1994) Photosynth. Res. 41, 389–395

    Article  CAS  PubMed  Google Scholar 

  6. Frank, H. A. & Cogdell, R J. (1996) Photochem. Photobiol. 63, 257–264

    Article  CAS  PubMed  Google Scholar 

  7. Niyogi, K., Björkman, O. and Grossman, A. (1997) Proc. Natl. Acad. Sci USA 94, 14162–14167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Niyogi, K., Björkman, 0. and Grossman, A. (1997) Plant Cell 9, 1369–1380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Niyogi, K., Grossman, A. and Björkman, O. (1998) Plant Cell 10, 1121–1134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Pogson, B., McDonald, K., Truong, M., Britton, G. and DellaPenna, D. (1996) Plant Cell 8, 1627–1639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Koorneef, M., Jorna, M. L, Brinkhorst-van der Swan, D. L. and Karssen, C.M. (1982) Theor. Appl. Genet. 61, 385–393

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Björkman, O., Niyogi, K.K. (1998). Xanthophylls and Excess-Energy Dissipation: A Genetic Dissection in Arabidopsis. In: Garab, G. (eds) Photosynthesis: Mechanisms and Effects. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3953-3_488

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3953-3_488

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5547-2

  • Online ISBN: 978-94-011-3953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics