Skip to main content

Low Temperature Excitation Transfer in the Fmo Complex. Simulations

  • Chapter
Photosynthesis: Mechanisms and Effects
  • 37 Accesses

Abstract

Electronic excited state (EES) models for the Fenna-Matthews-Olson (FMO) antenna complex of the green bacterium P. aestuarii have generally been based on obtaining an optimal match between the information contents of the optical steady-state spectra and the molecular organization [1-4]. Recent spectral and kinetic information gathered from probing the excited state processes through ultrafast measurements [5-7] have not yet been used effectively for further refinement of the EES and for quantification of the relation between the EES and the excited state kinetics. Recently, absorption difference spectrum (ADS) simulations have been reported for two of the models [1] by Buck et al. [6]. Important messages communicated in this study were: simulation of the ADS is another effective source of information; different models that can be rated equally acceptable in interpretation of steady-state spectra can yield broadly dissimilar ADS simulations; therefore, ADS simulations should be useful in distinguishing between different models and should be integrated as an important element of refinement in the further modeling. We have carried out simulations of absorption (ABS), linear dichroism (LD), singlet-triplet absorption difference (STAD) and ADS data in this strategy. We summarize our preliminary results on the EES structure and on the connection between the EES structure and the excited state kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lu, X. and Pearlstein, R.M. (1993) Photochem Photobiol. 57, 86ā€“91

    ArticleĀ  CASĀ  Google ScholarĀ 

  2. Gillen, D. (1996) J. Phys. Chem. B 100, 17683ā€“17689

    Google ScholarĀ 

  3. Iseri, E.I. and Gillen D. (1997) Doga-Tr. J. of Physics 21, 1129ā€“1143

    CASĀ  Google ScholarĀ 

  4. Louwe, R.J.W., Aartsma, T.J. and Hoff, A.J. (1997) J. Phys. Chem. B 101, 11280ā€“11287

    Google ScholarĀ 

  5. Savikhin, S. and Struve, W.S. (1996) Photosynth. Res. 48, 271ā€“276

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Buck, DR., Savikhin, S. and Struve, W.S. (1996) Biophys. J. 72, 24ā€“36

    ArticleĀ  Google ScholarĀ 

  7. Vulto, S.I.E., Streltsov, A.M. and Aartsma T.J. (1997) J. Phys. Chem. B 101, 4845ā€“4850

    Google ScholarĀ 

  8. Tronrud, D.E., Schmidt, M.F. and Matthews, B.W. (1986) J. Mol. Biol. 188, 443ā€“454

    Google ScholarĀ 

  9. Pearlstein, R.M. (1991) in Chlorophylls ( Scheer H., ed) CRC Press, Boca Raton USA, pp. 1047ā€“1078

    Google ScholarĀ 

  10. Iseri, E.I. (1998) MS Thesis, M.E.T.U., Ankara, Turkey

    Google ScholarĀ 

  11. Louwe, R.J.W., Vrieze, J., Hoff, A.J.and Aartsma, T.J. (1997) J. Phys. Chem. B 101, 11273ā€“12279

    Google ScholarĀ 

  12. Savikhin, S., Buck, D.R. and Struve, W.S. (1997) Biophys. J. 73, 2090ā€“2096

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Jean, J.M., Chan, C.K. and Fleming, G.R. (1988) Israel J. of Chem. 28, 169ā€“175

    ArticleĀ  CASĀ  Google ScholarĀ 

  14. Fƶrster, Th. (1948) Ann. Phys. [6] 2, 55ā€“75

    ArticleĀ  Google ScholarĀ 

  15. Van Mourik, F., Verwijst, R.R., Mulder, J.M., van Grondelle, R. (1994) J. Phys. Chem. 98, 10307ā€“10312

    Google ScholarĀ 

  16. Knox, R.S. and Gillen, D. (1993) Photochem. Photobiol. 57, 40ā€“43

    ArticleĀ  CASĀ  Google ScholarĀ 

  17. Struve, W. S. (1995) in Anoxygenic Photosynthetic Bacteria (Blankenship R.E., Madigan M.T., Bauer C.E., eds), Kluwer, Dortrecht, pp. 297ā€“313

    Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 1998 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Iseri, E.I., GiĆ¼en, D. (1998). Low Temperature Excitation Transfer in the Fmo Complex. Simulations. In: Garab, G. (eds) Photosynthesis: Mechanisms and Effects. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3953-3_44

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3953-3_44

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-5547-2

  • Online ISBN: 978-94-011-3953-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics