Skip to main content

Resistance Genes and the Perception and transduction of Elicitor Signals in Host-Pathogen Interactions

  • Chapter

Summary

Plants lack immune systems of the types known in animals, but nevertheless are resistant to most potential pathogens. Like in animals, resistance is based on an active response of the plant to pathogen attack. Activated defense responses most often culminate in the so-called hypersensitive response in which cells exposed to the pathogen undergo rapid cell death and prevent further invasion. Also similar to animals, this reaction depends primarily on recognition of the invading pathogen. Disease resistance genes play a pivotal role in the recognition process. Several resistance genes have been cloned, and current evidence suggests that their products physically interact with the products of microbial avirulence genes, named specific elicitors. In addition to these highly specific recognition phenomena, based on matching genes in plant and pathogen, plants also have exquisitely sensitive perception systems for so-called general elicitors, i.e. substances characteristic of whole groups of micro-organisms, such as microbial glycopeptides, cell wall fragments, and sterols. The substances recognized occur not only in pathogens, but also in saprophytes and even in symbiotic microorganisms. Chemoperception of these substances may trigger only some reactions associated with defense responses, thus providing an early warning for the presence of a foreign organism, or contribute substantially to reactions associated with the hypersensitive response, depending on plant species and developmental stage. Transduction of microbial signals in plants has been extensively studied after treatment with general elicitors. It remains an open question, however, how the signals generated by the interaction between avirulence gene products and resistance gene products are related to those generated by the perception of general elicitors.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

CD:

circular dichroism

cGMP:

cyclic guanosine monophosphate

DPI:

diphenylene iodonium

FSH:

follicle-stimulating hormone

FTIR:

Fourier-transform infrared spectroscopy

GUS:

-glucuronidase

HR:

hypersensitive response

JA:

jasmonic acid

LH/CG:

luteinizing hormone/chorionic gonadotropin

LRR:

leucine-rich repeat

MHC:

major histocompatibility complex

NO:

nitric oxide

NOS:

nitric oxide synthase

PAL:

phenylalanine ammunia-lyase

PCR:

polymerase chain reaction

PRs:

pathogenesis-related proteins

SA:

salicylic acid

SAR:

systemic acquired resistance

References

  • Alfano JR, Kim H-S, Delaney TP and Collmer A (1997) Evidence that the Pseudomonas syringae pv. syringae hrp-Ymked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells. Mol Plant-Microbe Interact 10: 580–588

    CAS  Google Scholar 

  • Alfano JR and Collmer A (1996) Bacterial pathogens in plants: life up against the wall. Plant Cell 8: 1683–1698

    PubMed  CAS  Google Scholar 

  • Anderson PA, Lawrence GJ, Morrish BC, Ayliffe MA, Finnegan EJ and Ellis JG (1997) Inactivation of the flax rust resistance gene M associated with loss of a repeated unit within the leucine-rich repeat coding region. Plant Cell 9: 641–651

    PubMed  CAS  Google Scholar 

  • Apostol I, Heinstein PF and Low PS (1989) Rapid stimulation of an oxidative burst during elicitation of cultured plant cells. Role in defense and signal transduction. Plant Physiol 90: 109–116

    CAS  Google Scholar 

  • Arlat M, Van Gijsegem F, Huet J-C, Pernollet J-C and Boucher CA (1994) PopAl, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. EMBO J 13: 543–553

    PubMed  CAS  Google Scholar 

  • Atkinson M, Bina J and Sequeira L (1993) Phosphoinositide breakdown during the K+/H+ exchange response of tobacco to Pseudomonas syringae pv. syringae. Mol Plant-Microbe Interact 6: 253–260

    CAS  Google Scholar 

  • Baillieul F, Genetet I, Kopp M, Saindrenan P, Fritig B and Kauffmann S (1995) A new elicitor of the hypersensitive response in tobacco: a fungal glycoprotein elicits cell death, expression of defence genes, production of salicylic acid, and induction of systemic acquired resistance. Plant J 8: 551–560

    PubMed  CAS  Google Scholar 

  • Baker CJ and Orlandi EW (1995) Active oxygen in plant pathogenesis. Annu Rev Phytopathol 33: 299–321

    PubMed  CAS  Google Scholar 

  • Basse CW and Boller T (1992) Glycopeptide elicitors of stress responses in tomato cells. TV-linked glycans are essential for activity but act as suppressors of the same activity when released from the glycopeptides. Plant Physiol 98: 1239–1247

    CAS  Google Scholar 

  • Basse CW, Bock K and Boller T (1992) Elicitors and suppressors of the defense response in tomato cells. Purification and characterization of glycopeptide elicitors and glycan suppressors generated by enzymatic cleavage of yeast invertase. J Biol Chem 267: 10258–10265

    CAS  Google Scholar 

  • Basse CW, Fath A and Boller T (1993) High affinity binding of a glycopeptide elicitor to tomato cells and microsomal membranes and displacement by specific glycan suppressors. J Biol Chem 268: 14724–14731.

    PubMed  CAS  Google Scholar 

  • Baureithel K, Felix G and Boller T (1994) Specific, high affinity binding of chitin fragments to tomato cells and membranes. Competitive inhibition of binding by derivatives of chitooligosaccharides and a Nod factor of Rhizobium. J Biol Chem 269: 17931–17938

    CAS  Google Scholar 

  • Beffa RS, Hofer R-M, Thomas M and Meins F, Jr. (1996) Decreased susceptibility to viral disease of β-l,3-glucanase-deficient plants generated by antisense transformation. Plant Cell 8: 1001–1011

    PubMed  CAS  Google Scholar 

  • Bendahmane A, Kohm BA, Dedi C and Baulcombe DC (1995) The coat protein of potato virus X is a strain-specific elicitor of Rx1-mediated virus resistance in potato. Plant J 8: 933–941

    PubMed  CAS  Google Scholar 

  • Bent AF (1996) Plant disease resistance genes: function meets structure. Plant Cell 8: 1757–1771

    PubMed  CAS  Google Scholar 

  • Bent AF, Kunkel BN, Dahlbeck D, Brown KL, Schmidt R, Giraudat J, Leung J and Staskawicz BJ (1994) RPS2 of Arabidopsis thaliana: a leucine-rich repeat class of plant disease resistance genes. Science 265: 1856–1860

    PubMed  CAS  Google Scholar 

  • Blechert S, Brodschelm W, Holder S, Kammerer L, Kutchan TM, Mueller MJ, Xia ZQ and Zenk MH (1995) The octadecanoic pathway: signal molecules for the regulation of secondary pathways. Proc Natl Acad Sci USA 92: 4099–4105

    PubMed  CAS  Google Scholar 

  • Boller T (1995) Chemoperception of microbial signals in plant cells. Annu Rev Plant Physiol Plant Mol Biol 46: 189–214

    CAS  Google Scholar 

  • Boller T and Felix G (1996) Olfaction in plants: specific perception of common microbial molecules. In: Stacey G, Mullin B and Gresshoff PM (eds) Biology of plant-microbe interactions, pp 1–8. International Society of Molecular Plant-Microbe Interactions, Knoxville

    Google Scholar 

  • Bonas U, Stall RE and Staskawicz B (1989) Molecular and structural characterization of the avirulence gene avrBs3 from Xanthomonas campestris pv. vesicatoria. Mol Gen Genet 218: 127–136

    CAS  Google Scholar 

  • Bonnet P, Lacourt I, Venard P and Ricci P (1994) Diversity in pathogenicity to tobacco and in elicitin production among isolates of Phytophthora parasitica. J Phytopathol 141: 25–37

    Google Scholar 

  • Bostock RM, Kuc JA and Laine RA (1981) Eicosapentaenoic and arachidonic acids from Phytophthora infestans elicit fungitoxic sesquiterpenes in the potato. Science 212: 67–69

    PubMed  CAS  Google Scholar 

  • Bostock RM, Yamamoto H, Choi D, Ricker KE and Ward BL (1992) Rapid stimulation of 5-lipoxygenase activity in potato by the fungal elicitor arachidonic acid. Plant Physiol 100: 1448–1456

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P and Lamb CJ (1992) Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant cell wall protein — a novel, rapid defense response. Cell 70: 21–30

    PubMed  CAS  Google Scholar 

  • Braun T, Schofield PR and Sprengel R (1991) Amino-terminal leucine-rich repeats in gonadotropin receptors determine hormone specificity. EMBO J 10: 1885–1890

    PubMed  CAS  Google Scholar 

  • Brisson LF, Tenhaken R and Lamb C (1994) Function of oxidative cross-linking of cell wall structural proteins in plant disease resistance. Plant Cell 6: 1703–1712

    PubMed  CAS  Google Scholar 

  • Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M, Frijters A, Van Daelen R, Van der Lee T, Diergaarde P, Groenendijk J, Topsch S, Vos P, Salamini F and Schulze-Lefert P (1997) The barley Mlo gene: a novel control element of plant pathogen resistance. Cell 88: 695–705

    PubMed  CAS  Google Scholar 

  • Cai D, Kleine M, Kifle S, Harloff H-J, Sandal NN, Marcker KA, Klein-Lankhorst RM, Salentijn EMJ, Lange W, Stiekema WJ, Wyss U, Grundler FMW and Jung KC (1997) Positional cloning of a gene for nematode resistance in sugar beet. Science 275: 832–834.

    PubMed  CAS  Google Scholar 

  • Cervone F and Albersheim P (1989) Host-pathogen interactions. XXXIII. A plant protein converts a fungal pathogenesis factor into an elicitor of plant defense responses. Plant Physiol 90: 542–548

    PubMed  CAS  Google Scholar 

  • Cheong J-J, Alba R, Côté F, Enkerli J and Hahn MG (1993) Solubilization of functional plasma membranelocalized hepta-β-glucoside elicitor-binding proteins from soybean. Plant Physiol 103: 1173–1182

    PubMed  CAS  Google Scholar 

  • Cheong J-J, Birberg W, Fügedi P, Pilotti A, Garegg PJ, Hong N, Ogawa T and Hahn MG (1991) Structureactivity relationships of oligo-β-glucoside elicitors of phytoalexin accumulation in soybean. Plant Cell 3: 127–136

    PubMed  CAS  Google Scholar 

  • Conconi A, Smerdon MJ, Howe GA and Ryan CA (1996) The octadecanoid signalling pathway in plants mediates a response to ultraviolet radiation. Nature 383: 826–829

    PubMed  CAS  Google Scholar 

  • Cosio EG, Frey T and Ebel J (1990) Solubilization of soybean membrane binding sites for fungal β-glucans that elicit phytoalexin accumulation. FEBS Letters 264: 235–238

    PubMed  CAS  Google Scholar 

  • Cosio EG, Feger M, Miller CJ, Antelo L and Ebel J (1996) High-affinity binding of fungal beta-glucan elicitors to cell membranes of species of the plant family Fabaceae. Planta 200: 92–99

    CAS  Google Scholar 

  • Côté F and Hahn MG (1994) Oligosaccharid: structures and signal transduction. Plant Mol Biol 26: 1379–1411

    PubMed  Google Scholar 

  • Dsilva I and Heath MC (1997) Purification and characterization of two novel hypersensitive responseinducing specific elicitors produced by the cowpea rust fungus. J Biol Chem 272: 3924–3927

    CAS  Google Scholar 

  • Dangl JL (1992) The major histocompatibility complex a la carte: Are there analogies to plant disease resistance genes on the menu? Plant J 2: 3–11

    CAS  Google Scholar 

  • Dangl JL (1995) Pièce de résistance: novel classes of plant disease resistance genes. Cell 80: 363–366

    PubMed  CAS  Google Scholar 

  • Dangl JL, Dietrich RA and Richberg MH (1996) Death don’t have no mercy: cell death programs in plant-microbe interactions. Plant Cell 8: 1793–1807

    PubMed  CAS  Google Scholar 

  • Darvill AG and Albersheim P (1984) Phytoalexins and their elicitors — a defense against microbial infection of plants. Annu Rev Plant Physiol 35: 243–275

    CAS  Google Scholar 

  • Darvill A, Augur C, Bergmann C, Carlson RW, Cheong J-J, Eberhard S, Hahn MG, Lo VM, Marfa V, Meyer B, Mohnen D, O’Neill MA, Spiro MD, Van Halbeek H, York WS and Albersheim P (1992) Oligosaccharid — Oligosaccharides that regulate growth, development and defence responses in plants. Glycobiology 2: 181–198

    PubMed  CAS  Google Scholar 

  • Davis D, Merida J, Legendre L, Low PS and Heinstein P (1993) Independent elicitation of the oxidative burst and phytoalexin formation in cultured plant cells. Phytochemistry 32: 607–611

    CAS  Google Scholar 

  • De Wit PJGM (1992) Molecular characterization of gene-for-gene systems in plant-fungus interactions and the application of avirulence genes in control of plant pathogens. Annu Rev Phytopathol 30: 391–418

    PubMed  Google Scholar 

  • Delaney T, Uknes S, Vemooij B, Friedrich L, Weymann K, Negrotto D, Gaffney T, Gut-Rella M, Kessmann H, Ward E and Ryals J (1994) A central role of salicylic acid in plant disease resistance. Science 266: 1247–1250

    PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA and Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588

    PubMed  CAS  Google Scholar 

  • Devergne J-C, Bonnet P, Panabières F, Blein J-P and Ricci P (1992) Migration of the fungal protein cryptogein within tobacco plants. Plant Physiol 99: 843–847

    PubMed  CAS  Google Scholar 

  • Devlin WS and Gustine DL (1992) Involvement of the oxidative burst in phytoalexin accumulation and the hypersensitive reaction. Plant Physiol 100: 1189–1195

    PubMed  CAS  Google Scholar 

  • Dietrich A, Mayer JE and Hahlbrock K (1990) Fungal elicitor triggers rapid, transient and specific protein phosphorylation in parsley cell suspension cultures. J Biol Chem 265: 6360–6368

    PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA and Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577

    PubMed  CAS  Google Scholar 

  • Dinesh-Kumar SP, Whitham S, Choi D, Hehl R, Corr C and Baker B (1995) Transposon tagging of tobacco mosaic virus resistance gene N: its possible role in the TMV-N-mediated signal transduction pathway. Proc Natl Acad Sci USA 92: 4175–4180

    PubMed  CAS  Google Scholar 

  • Dixon MS, Jones DA, Keddie JS, Thomas CM and Jones JDG (1996) The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell 84: 451–459

    PubMed  CAS  Google Scholar 

  • Dunkle LD and Macko V (1995) Peritoxins and their effects on Sorghum. Can J Bot 73: S444–S452

    CAS  Google Scholar 

  • Durner J, Shah J and Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2: 266–274

    Google Scholar 

  • Durner J, Wendehenne D, Klessig DF (1998) Defense gene induction in tobacco by nitric oxide, cyclic GMP, and cyclic ADP-ribose. Proc Natl Acad Sci USA 95: 10328–10333

    PubMed  CAS  Google Scholar 

  • Ebel J and Cosio EG (1994) Elicitors of plant defense responses. Int Rev Cytol 148: 1–36

    CAS  Google Scholar 

  • Farmer EE, Caldelari D, Pearce G, Walker-Simmons MK and Ryan CA (1994) Diethyldithiocarbamic acid inhibits the octadecanoid signaling pathway for the wound induction of proteinase inhibitors in tomato leaves. Plant Physiol 106: 337–342

    CAS  Google Scholar 

  • Fath A and Boller T (1996) Solubilization, partial purification, and characterization of a binding site for a glycopeptide elicitor from microsomal membranes of tomato cells. Plant Physiol 112: 1659–1668

    PubMed  CAS  Google Scholar 

  • Felix G, Grosskopf DG, Regenass M and Boller T (1991) Rapid changes of protein phosphorylation are involved in transduction of the elicitor signal in plant cells. Proc Natl Acad Sci USA 88: 8831–8834

    PubMed  CAS  Google Scholar 

  • Felix G, Regenass M and Boller T (1993) Specific perception of subnanomolar concentrations of chitin fragments by tomato cells: induction of extracellular alkalinization, changes in protein phosphorylation, and establishment of a refractory state. Plant J 4: 307–316

    CAS  Google Scholar 

  • Felix G, Regenass M, Spanu P and Boller T (1994) The protein Phosphatase inhibitor calyculin A mimics elicitor action in plant cells and induces rapid hyperphosphorylation of specific proteins as revealed by pulse labeling with [33P]phosphate. Proc Natl Acad Sci USA 91: 952–956

    PubMed  CAS  Google Scholar 

  • Feuillet C, Schachermayr G and Keller B (1997) Molecular cloning of a new receptor-like kinase gene encoded at the Lr10 disease resistance locus of wheat. Plant J 11: 45–52

    PubMed  CAS  Google Scholar 

  • Flor HH (1971) Current status of the gene-for-gene concept. Annu Rev Phytopathol 9: 275–296

    Google Scholar 

  • Frey T, Cosio EG and Ebel J (1993) Affinity purification and characterization of a binding protein for a hepta-β-glucoside phytoalexin elicitor in soybean. Phytochemistry 32: 543–549

    CAS  Google Scholar 

  • Freytag S, Arabatzis N, Hahlbrock K and Schmelzer E (1994) Reversible cytoplasmic rearrangements precede wall apposition, hypersensitive cell death and defense-related gene activation in potato/Phytophthora infestans interactions. Planta 194: 123–135

    CAS  Google Scholar 

  • Gaffney T, Friedrich L, Vernooij B, Negrotto D, Nye G, Uknes S, Ward E, Kessmann H and Ryals J (1993) Requirement of salicylic acid for the induction of systemic acquired resistance. Science 261:754–756

    PubMed  CAS  Google Scholar 

  • Gaudriault S, Malkandrin L, Paulin J-P and Barry M-A (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26: 1057–1069

    PubMed  CAS  Google Scholar 

  • Gerchenson LE and Totello RJ (1992) Apoptosis: a different type of cell death. FASEB J 6: 2450–2455

    Google Scholar 

  • Gopalan S, Bauer DW, Alfano JR, Loniello AO, He SY and Collmer A (1996) Expression of the Pseudomonas syringae avirulence protein AvrB in plant cells alleviates its dependence on the hypersensitive response and pathogenicity (Hrp) secretion system in eliciting genotype-specific hypersensitive cell death. Plant Cell 8: 1095–1105

    PubMed  CAS  Google Scholar 

  • Graham TL and Graham MY (1991) Cellular coordination of molecular responses in plant defense. Mol Plant-Microbe Interact 4: 415–422

    CAS  Google Scholar 

  • Granado J, Felix G and Boller T (1995) Perception of fungal sterols in plants. Subnanomolar concentrations of ergosterol elicit extracellular alkalinization in tomato cells. Plant Physiol 107: 485–490

    CAS  Google Scholar 

  • Grant MR, Godiard L, Straube E, Ashfield T, Innes R and Dangl JL (1995) Structure of the Arabidopsis Rpml gene enabling dual specificity disease resistance. Science 269: 843–846

    PubMed  CAS  Google Scholar 

  • Gray J, Close PS, Briggs SP and Johal GS (1997) A novel suppressor of cell death in plant encoded by the Llsl gene of maize. Cell 89: 25–31

    PubMed  CAS  Google Scholar 

  • Greenberg JT, Guo A, Klessig DF and Ausubel FM (1994) Programmed cell death in plants: a pathogentriggered response activated coordinately with multiple defense functions. Cell 77: 551–563

    PubMed  CAS  Google Scholar 

  • Groisman EA and Ochman H (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791–794

    PubMed  CAS  Google Scholar 

  • Gross P, Julius C, Schmelzer E and Hahlbrock K (1993) Translocation of cytoplasm and nucleus to fungal penetration sites is associated with depolymerization of microtubules and defense gene activation in infected, cultured parsley cells. EMBO J 12: 1735–1744

    PubMed  CAS  Google Scholar 

  • Grosskopf DG, Felix G and Boller T (1990) K-252a inhibits the response of tomato cells to fungal elicitors in vivo and their microsomal protein kinase in vitro. FEBS Letters 275: 177–180

    PubMed  CAS  Google Scholar 

  • Gundlach H, Müller MJ, Kutchan TM and Zenk MH (1992) Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc Natl Acad Sci USA 89: 2389–2393

    PubMed  CAS  Google Scholar 

  • Hahlbrock K, Scheel D, Logemann E, Nürnberger T, Parniske M, Reinold S, Sacks WR and Schmelzer E (1995) Oligopeptide elicitor-mediated defense gene activation in cultured parsley cells. Proc Natl Acad Sci USA 92: 4150–4157

    PubMed  CAS  Google Scholar 

  • Hahn MG (1996) Microbial elicitors and their receptors in plants. Annu Rev Phytopathol 34: 387–412

    PubMed  CAS  Google Scholar 

  • Hahn MG, Darvill A and Albersheim P (1981) Host-pathogen interactions. XIX. The endogenous elicitor, a fragment of a plant cell wall Polysaccharide that elicits phytoalexin accumulation in soybeans. Plant Physiol 68: 1161–1169

    PubMed  CAS  Google Scholar 

  • Hammond-Kosack KE and Jones JDG (1997) Plant disease resistance genes. Annu Rev Plant Physiol Plant Mol Biol 48: 573–607

    Google Scholar 

  • Hammond-Kosack KE, Silverman P, Raskin I and Jones JDG (1996) Race-specific elicitors of Cladosporium fulvum induce changes in cell morphology, and ethylene and salicylic acid synthesis, in tomato cells carrying the corresponding Cf-disease resistance gene. Plant Physiol 110: 1381–1394

    PubMed  CAS  Google Scholar 

  • Henschke JP and Rickards RW (1996) Biomimetic synthesis of the microbial elicitor syringolide 2. Tetrahedron Lett 37: 3557–3560

    CAS  Google Scholar 

  • Herbers K, Conrads-Strauch J and Bonas U (1992) Race-specificity of plant resistance to bacterial spot disease determined by repetitive motifs in a bacterial avirulence protein. Nature 356: 172–174

    CAS  Google Scholar 

  • Hinsch M and Staskawicz B (1996) Identification of a new Arabidopsis disease resistance locus, Rps4, and cloning of the corresponding avirulence gene, avrRps4, from Pseudomonas syringae pv. pisi. Mol Plant-Microbe Interact 9: 55–61

    CAS  Google Scholar 

  • Howard RJ and Valent B (1996) Breaking and entering—host penetration by the fungal rice blast pathogen Magnaporthe grisea. Ann Rev Microbiol 50: 491–512

    CAS  Google Scholar 

  • Hu G, Richter TE, Hulbert SH and Pryor T (1996) Disease lesion mimicry caused by mutations in the rust resistance gene rpl. Plant Cell 8: 1367–1376

    PubMed  CAS  Google Scholar 

  • Innes RW, Bent AF, Kunkel BN, Bisgrove SR and Staskawicz BJ (1993) Molecular analysis of avirulence gene avrRpt2 and identification of a putative regulatory sequence common to all known Pseudomonas syringae avirulence genes. J Bacteriol 175: 4859–4869

    PubMed  CAS  Google Scholar 

  • Jakobek JL and Lindgren PB (1993) Generalized induction of defense responses in bean is not correlated with the induction of the hypersensitive reaction. Plant Cell 5: 49–56

    PubMed  CAS  Google Scholar 

  • Ji C, Okinaka Y, Takeuchi Y, Tsurushima T, Buzzall RI, Sims JJ, Midland SL, Slaymaker D, Yoshikawa M, Yamaoka N and Keen NT (1997) Specific binding of the syringolide elicitors to a soluble fraction from soybean leaves. Plant Cell 9: 1425–1433

    PubMed  CAS  Google Scholar 

  • Jia Y, Loh Y-T, Zhou J and Martin GB (1997) Alleles of Pto and Fen occur in bacterial speck-susceptible and fenthion-insensitive tomato cultivars and encode active protein kinases. Plant Cell 9: 61–73

    PubMed  CAS  Google Scholar 

  • Johal GS and Briggs SP (1992) Reductase activity encoded by the HM1 disease resistance gene in maize. Science 258: 985–987

    PubMed  CAS  Google Scholar 

  • Jones DA, Thommas CM, Hammond-Kosack KE, Balint-Kurti PJ and Jones JDG (1994) Isolation of the tomato Cf-9 gene for resistance to Cladosporium fulvum by transposon tagging. Science 266: 789–793

    PubMed  CAS  Google Scholar 

  • Joosten, MHAJ, Cozjinsen TJ and De Wit PJGM (1994) Host resistance to a fungal tomato pathogen lost by a single base-pair change in an avirulence gene. Nature 367: 384–386

    PubMed  CAS  Google Scholar 

  • Kamoun S, Young M, Glascock CB and Tyler BM (1993) Extracellular protein elicitors from Phytophthora: host-specificity and induction of resistance to bacterial and fungal pathogens. Mol Plant-Microbe Interact 6: 15–25

    CAS  Google Scholar 

  • Kanazin V, Marek LF and Shoemaker RC (1996) Resistance gene analogs are conserved and clustered in soybean. Proc Nat Acad Sci USA 93: 11746–11750

    PubMed  CAS  Google Scholar 

  • Kang S, Sweigard JA and Valent B (1995) The Pwl host specificity gene family in the blast fungus Magnaporthe grisea. Mol Plant-Microbe Interact 8: 939–948

    PubMed  CAS  Google Scholar 

  • Kearney B and Staskawicz BJ (1990) Widespread distribution and fitness contribution of Xanthomonas campestris avirulence gene avrBs2. Nature 346: 385–386

    PubMed  CAS  Google Scholar 

  • Keen NT (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24: 447–463

    PubMed  CAS  Google Scholar 

  • Keen NT, Tamaki S, Kobayashi D, Gerhold D, Stayton M, Shen H, Gold S, Lorang J, Thordal-Christensen H, Dahlbeck D and Staskawicz BJ (1990) Bacteria expressing avirulence gene D produce a specific elicitor of the soybean hypersensitive reaction. Mol Plant-Microbe Interact 3: 112–121

    CAS  Google Scholar 

  • Keen NT and Bruegger B (1977) Phytoalexins and chemicals that elicit their production in plants. In: Hedin PA (ed) Host Plant Resistance to Pests, pp 1–26. American Chemical Society, Washington DC

    Google Scholar 

  • Keen NT and Buzzell RI (1991) New disease resistance genes in soybean against Pseudomonas syringae pv. glycinea: evidence that one of them interacts with a bacterial elicitor. Theor Appl Genet 81: 133–138

    CAS  Google Scholar 

  • Keen NT, Ridgway D and Boyd C (1992) Cloning and characterization of a phospholipase gene from Erwinia chrysanthemi EC16. Mol Microbiol 6: 179–187

    PubMed  CAS  Google Scholar 

  • Keith LM, Boyd C, Keen NT and Partridge JE (1997) Comparison of avrD alleles from Pseudomonas syringae pv. glycinea. Mol Plant-Microbe Interact 10: 416–422

    CAS  Google Scholar 

  • Keller T. Damude HG, Werner D, Doerner P, Dixon RA and Lamb C (1998) A plant homolog of the neutrophil NADPH oxidase gp91phox subunit gene encodes a plasma membrane protein with calcium binding motifs. Plant Cell 10: 255–266

    PubMed  CAS  Google Scholar 

  • Knight MR, Campbell AK and Trewavas AJ (1991) Transgenic plant aequorin reports the effects of touch and cold-shock and elicitors on cytoplasmic calcium. Nature 352: 524–526

    PubMed  CAS  Google Scholar 

  • Knogge W (1996) Fungal infection of plants. Plant Cell 8: 1711–1722

    PubMed  CAS  Google Scholar 

  • Kobayashi DY, Tamaki S and Keen NT (1990a) Molecular characterization of avirulence gene D from Pseudomonas syringae pv. tomato. Mol Plant-Microbe Interact 3 94–102

    CAS  Google Scholar 

  • Kobayashi DY, Tamaki S, Trollinger DJ, Gold S and Keen NT (1990b) A gene from Pseudomonas syringae pv. glycinea with homology to avirulence gene D from P.s. pv. tomato but devoid of the avirulence phenotype. Mol Plant-Microbe Interact 3 103–111

    PubMed  CAS  Google Scholar 

  • Kobe B and Deisenhofer J (1994) The leucine-rich repeat: a versatile binding motif. Trends Biochem Sci 19: 415–421

    PubMed  CAS  Google Scholar 

  • Kooman-Gersmann M, Honée G, Bonnema G and De Wit PJGM (1996) A high-affinity binding site for the AVR9 peptide elicitor of Cladosporium fulvum is present on the plasma membranes of tomato and other solanaceous plants. Plant Cell 8: 929–938

    PubMed  CAS  Google Scholar 

  • Lawrence GJ, Finnegan EJ, Ayliffe MA and Ellis JG (1995) The L6 gene for flax rust resistance is related to the Arabidopsis bacterial resistance gene Rpg2 and the tobacco viral resistance gene N. Plant Cell 7: 1195–1206

    PubMed  CAS  Google Scholar 

  • Leach JE and White FF (1996) Bacterial avirulence genes. Annu Rev Phytopathol 34: 153–179

    PubMed  CAS  Google Scholar 

  • Legendre L, Heinstein PF and Low PS (1992) Evidence for participation of GTP-binding proteins in elicitation of the rapid oxidative burst in cultured soybean cells. J Biol Chem 267: 20140–20147

    PubMed  CAS  Google Scholar 

  • Legendre L, Yueh YG, Crain R, Haddock N, Heinstein PF and Low PS (1993) Phospholipase-C activation during elicitation of the oxidative burst in cultured plant cells. J Biol Chem 268: 24559–24563

    PubMed  CAS  Google Scholar 

  • Leister RT, Ausubel FM and Katagiri F (1996) Molecular recognition of pathogen attack occurs inside of plant cells in plant disease resistance specified by the Arabidopsis genes RPS2 and RPM1. Proc Natl Acad Sci USA 93: 15497–15502

    PubMed  CAS  Google Scholar 

  • Levine A, Tenhaken R, Dixon RA and Lamb C (1994) H2O2 from the oxidative burst orchestrates the plant hypersensitive response. Cell 79: 583–593

    PubMed  CAS  Google Scholar 

  • Lindgren PB, Peet RC and Panopoulos NJ (1986) Gene cluster of Pseudomonas syringae pv. phaseolicola controls pathogenicity on bean plants and hypersensitivity on nonhost plants. J Bacteriol 168: 512–522

    CAS  Google Scholar 

  • Lorang JM and Keen NT (1995) Characterization of avrE from Pseudomonas syringae pv. tomato: a hrp-lmked avirulence locus consisting of at least two transcriptional units. Mol Plant-Microbe Interact 8: 49–57

    CAS  Google Scholar 

  • Lorang JM, Shen H, Kobayashi D, Cooksey D and Keen NT (1994) avrA and avrE in Pseudomonas syringae pv. tomato PT23 play a role in virulence on tomato plants. Mol Plant-Microbe Interact 7: 508–515

    CAS  Google Scholar 

  • MacKintosh C, Lyon GD and MacKintosh RW (1994) Protein Phosphatase inhibitors activate anti-fungal defence responses of soybean cotyledons and cell cultures. Plant J 5: 137–147

    CAS  Google Scholar 

  • Malamy J, Carr JP, Klessig DF and Raskin I (1990) Salicylic acid: a likely endogenous signal in the resistance response of tobacco to viral infection. Science 250: 1002–1004

    PubMed  CAS  Google Scholar 

  • Mansfield J, Jenner C, Hockenhull R, Bennett MA and Stewart R (1994) Characterization of avrPphE, a gene for cultivar-specific avirulence from Pseudomonas syringae pv phaseolicola which is physically linked to hrpY, a new hrp gene identified in the halo-blight bacterium. Mol Plant-Microbe Interact 7: 726–739

    PubMed  CAS  Google Scholar 

  • Martin GB (1996) Molecular cloning of plant disease resistance genes. In: Stacey G and Keen NT (eds) Plant-Microbe Interactions Vol 1, pp 1–32. Chapman and Hall, New York

    Google Scholar 

  • Martin GB, Brommonschenkel SH, Chunwongse J, Frary A, Ganal MW, Spivey R, Wu T, Earle ED and Tanksley SD (1993) Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science 262: 1432–1436

    PubMed  CAS  Google Scholar 

  • Martin GB, Frary A, Wu TY, Brommonschenkel S, Chunwongse J, Earle ED and Tanksley SD (1994) A member of the tomato Pto gene family confers sensitivity to fenthion resulting in rapid cell death. Plant Cell 6: 1543–1552

    PubMed  CAS  Google Scholar 

  • Mathieu Y, Kurkdjian A, Xia H, Guern J, Koller A, Spiro MD, O’Neill M, Albersheim P and Darvill A (1991) Membrane responses induced by oligogalacturonides in suspension-cultured tobacco cells. Plant J 1: 333–343

    Google Scholar 

  • Mauch F, Mauch-Mani B and Boller T (1988) Antifungal hydrolases in pea tissue. 2. Inhibition of fungal growth by combinations of chitinase and β-l,3-ghucanase. Plant Physiol 88: 936–942

    PubMed  CAS  Google Scholar 

  • Mauch-Mani B and Slusarenko AJ (1996) Production of salicylic acid precursors is a major function of Phenylalanine ammonia-lyase in the resistance of Arabidopsis to Peronospora parasitica. Plant Cell 8: 203–212

    PubMed  CAS  Google Scholar 

  • McDowell JM, Dhandaydham M, Long TA, Aarts MGM, Goff S, Holub EB and Dangl JL (1998) Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10: 1861–1874

    PubMed  CAS  Google Scholar 

  • Mehdy MC (1994) Active oxygen species in plant defense against pathogens. Plant Physiol 105: 467–472

    PubMed  CAS  Google Scholar 

  • Melotto E, Greve LC and Labavitch JM (1994) Cell wall metabolism in ripening fruit. VII. Biologically active pectin oligomers in ripening tomato (Lycopersicon esculentum Mill) fruits. Plant Physiol 106: 575–581

    PubMed  CAS  Google Scholar 

  • Métraux J-P, Signer H, Ryals J, Ward E, Wyss-Benz M, Gaudin J, Raschdorf K, Schmid E, Blum W and Inverardi B (1990) Increase in salicylic acid at the onset of systemic acquired resistance in cucumber. Science 250: 1004–1006

    PubMed  Google Scholar 

  • Michelmore R (1995) Molecular approaches to manipulation of disease resistance genes. Annu Rev Phytopathol 33: 393–427

    PubMed  CAS  Google Scholar 

  • Michelmore R (1996) Flood warning — resistance genes unleashed. Nature Genetics 14: 376–378

    PubMed  CAS  Google Scholar 

  • Midland SL, Keen NT, Sims JJ, Midland MM, Stayton MM, Burton V, Smith MJ, Mazzola EP, Graham KJ and Clardy J (1993) The structures of syringolide-1 and syringolide-2, novel C-glycosidic elicitors from Pseudomonas syringae pv. tomato. J Org Chem 58: 2940–2945

    CAS  Google Scholar 

  • Mindrinos M, Katagiri F, Yu G-L and Ausubel FM (1994) The A. thaliana resistance gene RPS2 encodes a protein containing a nucleotide-binding site and leucine-rich repeats. Cell 78: 1089–1099

    CAS  Google Scholar 

  • Mittler R, Shulaev V, Seskar M and Lam E (1996) Inhibition of programmed cell death in tobacco plants during a pathogen-induced hypersensitive response at low oxygen pressure. Plant Cell 8: 1991–2001

    PubMed  CAS  Google Scholar 

  • Müller MJ, Brodschelm W, Spannagl E and Zenk MH (1993) Signaling in the elicitation process is mediated through the octadecanoid pathway leading to jasmonic acid. Proc Natl Acad Sci USA 90: 7490–7494

    Google Scholar 

  • Mulya K, Takikawa YK and Tsuyumu S (1996) The presence of regions homologous to hrp cluster in Pseudomonas fluorescens PF632R. Ann Phytopathol Soc Japan 62: 353–359

    Google Scholar 

  • Murillo J, Shen H, Gerhold D, Sharma A, Cooksey DA and Keen NT (1994) Characterization of pPT23B, the plasmid involved in syringolide production by Pseudomonas syringae pv. tomato PT23 Plasmid 31: 275–287

    CAS  Google Scholar 

  • Neuenschwander U, Lawton K and Ryals J (1996) Systemic acquired resistance. In: Stacey G and Keen NT (eds) Plant-Microbe Interactions Vol 1, pp 81–106. Chapman and Hall, New York

    Google Scholar 

  • Nojiri H, Sugimori M, Yamane H, Nishimura Y, Yamada A, Shibuya N, Kodama O, Murofushi N and Omori T (1996) Involvement of jasmonic acid in elicitor-induced phytoalexin production in suspension-cultured rice cells. Plant Physiol 110: 387–392

    PubMed  CAS  Google Scholar 

  • Nürnberger T, Jabs T, Nennstiel D, Sacks WR, Hahlbrock K and Scheel D (1994) High affinity binding of a fungal Oligopeptide elicitor to parsley plasma membranes triggers multiple defense responses. Cell 78: 449–460

    PubMed  Google Scholar 

  • Ori N, Eshed Y, Presting G, Aviv D, Tanksley S, Zamir D and Fluhr R (1997) The I2C family from the wilt disease resistance locus 12 belongs to the nucleotide binding, leucine-rich repeat superfamily of plant resistance genes. Plant Cell 9: 521–532

    PubMed  CAS  Google Scholar 

  • Padgett HS and Beachy RN (1993) Analysis of a tobacco mosaic virus strain capable of overcoming N gene-mediated resistance. Plant Cell 5: 577–586.

    PubMed  CAS  Google Scholar 

  • Parker JE, Hahlbrock K and Scheel D (1988) Different cell-wall components from Phytophthora megasperma f. sp. glycinea elicit phytoalexin production in soybean and parsley. Planta 176: 75–82

    CAS  Google Scholar 

  • Parker JE, Coleman MJ, Szabo V, Frost LN, Schmidt R, Van der Biezen EA, Moores T, Dean C, Daniels MJ and Jones JDG (1997) The Arabidopsis downey mildew resistance gene RPP5 shares similarity to the Toll and interleukin-1 receptors with N and L6. Plant Cell 9: 879–894

    PubMed  CAS  Google Scholar 

  • Pearce G, Strydom D, Johnson S and Ryan CA (1991) A Polypeptide from tomato leaves induces woundinducible proteinase inhibitor proteins. Science 253: 895–898

    PubMed  CAS  Google Scholar 

  • Peng M and Kuc J (1992) Peroxidase-generated hydrogen peroxide as a source of antifungal activity in vitro and on tobacco leaf disks. Phytopathology 82: 696–699

    CAS  Google Scholar 

  • Penninckx IAMA, Eggermont K, Terras FRG, Thomma BPJ, De Samblanx GW, Buchala A, Métraux J-P, Manners JM and Broekaert WF (1996) Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8: 2309–2323

    PubMed  CAS  Google Scholar 

  • Pirhonen MU, Lidell MC, Rowley DL, Lee SW, Jin SM, Liang YQ, Silverstone S, Keen NT and Hutcheson SW (1996) Phenotypic expression of Pseudomonas syringae avr genes in E. coli is linked to the activities of the hrp-encoded secretion system. Mol Plant-Microbe Interact 9: 252–260

    CAS  Google Scholar 

  • Pugin A, Franchisse J-M, Tavernier E, Bligny R, Gout E, Douce R and Guern J (1997) Early events induced by the elicitor cryptogein in tobacco cells: involvement of a plasma membrane NADPH oxidase and activation of glycolysis and the pentose phosphate pathway. Plant Cell 9: 2077–2091

    PubMed  CAS  Google Scholar 

  • Rasmussen JB, Hammerschmidt R and Zook MN (1991) Systemic induction of salicylic acid accumulation in cucumber after inoculation with Pseudomonas syringae pv. syringae. Plant Physiol 97: 1342–1347

    CAS  Google Scholar 

  • Ricci P, Bonnet P, Huet J-C, Sallantin M, Beauvais-Cante F, Bruneteau M, Billard V, Michel G and Pernollet J-C (1989) Structure and activity of proteins from pathogenic fungi Phytophthora eliciting necrosis and acquired resistance in tobacco. Eur J Biochem 183: 555–563

    PubMed  CAS  Google Scholar 

  • Richter TE, Pryor TJ, Bennetzen JL and Hulbert SH (1995) New rust resistance specificities associated with recombination in the Rpl complex in maize. Genetics 141: 373–381

    PubMed  CAS  Google Scholar 

  • Ritter C and Dangl JL (1995) The avrRpml gene of Pseudomonas syringae pv. maculicola is required for virulence on Arabidopsis. Mol Plant-Microbe Interact 8: 444–453

    CAS  Google Scholar 

  • Roine E, Wei W, Yuan J, Nurmiaho-Lassila L, Kalkkinen N, Romantschuk M and He SY (1997) Hrp pilus: a novel hrp-dependent bacterial surface appendage produced by Pseudomonas syringae DC3000. Proc Nat Acad Sci USA 94: 3459–3464

    PubMed  CAS  Google Scholar 

  • Rommens CMT, Salmeron JM, Baulcombe DC and Staskawicz BJ (1995a) Use of a gene expression system based on potato virus X to rapidly identify and characterize a tomato pto homolog that controls fenthion sensitivity. Plant Cell 7: 249–257

    PubMed  CAS  Google Scholar 

  • Rommens CMT, Salmeron JM, Oldroyd GED and Staskawicz BJ (1995b) Intergeneric transfer and functional expression of the tomato disease resistance gene Pto. Plant Cell 7 1537–1544

    PubMed  CAS  Google Scholar 

  • Ryals JA, Neuenschwander UH, Willits MG, Molina A, Steiner H-Y and Hunt MD (1996) Systemic acquired resistance. Plant Cell 8: 1809–1819

    PubMed  CAS  Google Scholar 

  • Sacks WR, Nürnberger T, Hahlbrock K and Scheel D (1995) Molecular characterization of nucleotide sequences encoding the extracellular glycoprotein elicitor from Phytophthora megasperma. Mol Gen Genet 246: 45–55

    PubMed  CAS  Google Scholar 

  • Salmeron JM and Staskawicz BJ (1993) Molecular characterization and hrp-dependence of the avirulence gene avrPto from Pseudomonas syringae pv. tomato. Mol Gen Genet 239: 6–16

    CAS  Google Scholar 

  • Salmeron JM, Barker SJ, Carland FM, Mehta AY and Staskawicz BJ (1994) Tomato mutants altered in bacterial disease resistance provide evidence for a new locus controlling pathogen recognition. Plant Cell 6: 511–520

    PubMed  CAS  Google Scholar 

  • Salmeron JM, Oldroyd GED, Rommens CMT, Scofield SR, Kim HS, Lavelle DT, Dahlbeck D and Staskawicz BJ (1996) Tomato Prf is a member of the leucine-rich repeat class of plant disease resistance genes and lies embedded within the Pto kinase gene cluster. Cell 86: 123–133

    PubMed  CAS  Google Scholar 

  • Salmond GPC (1994) Secretion of extracellular virulence factors by plant pathogenic bacteria. Annu Rev Phytopathol 32: 181–200

    CAS  Google Scholar 

  • Schmidt WE and Ebel J (1987) Specific binding of a fungal glucan phytoalexin elicitor to membrane fractions from soybean Glycine max. Proc Natl Acad Sci USA 84: 4117–4121

    PubMed  CAS  Google Scholar 

  • Scofield SR, Tobias CM, Rathjen JP, Chang JH, Lavelle DT, Michelmore RW and Staskawicz BJ (1996) Molecular basis of gene-for-gene specificity in bacterial speck disease of tomato. Science 274: 2063–2065

    PubMed  CAS  Google Scholar 

  • Sela-Buurlage MB, Ponstein AS, Bres-Vloemans SA, Melchers LS, Van den Elzen PJM and Cornelissen BJC (1993) Only specific tobacco (Nicotiana tabacum) chitinases and β-l,3-glucanases exhibit antifungal activity. Plant Physiol 101: 857–863

    PubMed  CAS  Google Scholar 

  • Sharon A, Bailey BA, McMurtry JP, Taylor R and Anderson JD (1992) Characteristics of ethylene biosynthesis-inducing xylanase movement in tobacco leaves. Plant Physiol 100: 2059–2065

    PubMed  CAS  Google Scholar 

  • Sharon A, Fuchs Y and Anderson JD (1993) The elicitation of ethylene biosynthesis by a Trichoderma xylanase is not related to the cell wall degradation activity of the enzyme. Plant Physiol 102: 1325–1329

    PubMed  CAS  Google Scholar 

  • Shen H and Keen NT (1993) Characterization of the promoter of avirulence gene D from Pseudomonas syringae pv. tomato. J Bacteriol 175: 5916–5924

    CAS  Google Scholar 

  • Shibuya N, Kaku H, Kuchitsu K and Maliarik MJ (1993) Identification of a novel high-affinity binding site for N-acetylchitooligosaccharide elicitor in the membrane fraction from suspension-cultured rice cells. FEBS Letters 329: 75–78

    PubMed  CAS  Google Scholar 

  • Shibuya N, Ebisu N, Kamada Y, Kaku H, Cohn J and Ito Y (1996) Localization and binding characteristics of a high-affinity binding site for N-acetylchitooligosaccharide elicitor in the plasma membrane from suspension-cultured rice cells suggest a role as a receptor for the elicitor signal at the cell surface. Plant & Cell Physiol 37: 894–898

    CAS  Google Scholar 

  • Sieber V, Jurnak F and Moe GR (1995) Circular dichroism of the parallel β helical proteins pectate lyase C and E. Proteins 23: 32–37

    PubMed  CAS  Google Scholar 

  • Song WY, Wang GL, Chen LL, Kim HS, Pi LY, Holsten T, Gardner J, Wang B, Zhai WX, Zhu LH, Fauquet C and Ronald P (1995) A receptor kinase-like protein encoded by the rice disease resistance gene, Xa21. Science 270: 1804–1806

    PubMed  CAS  Google Scholar 

  • Staehelin C, Granado J, Müller J, Wiemken A, Mellor RB, Felix G, Regenass M, Broughton WJ and Boller T (1994) Perception of Rhizobium modulation factors by tomato cells and inactivation by root chitinases. Proc Natl Acad Sci USA 91: 2196–2200

    PubMed  CAS  Google Scholar 

  • Staskawicz BJ, Ausubel FM, Baker BJ, Ellis JG and Jones JDG (1995) Molecular genetics of plant disease resistance. Science 268: 661–667

    PubMed  CAS  Google Scholar 

  • Stein JC, Howlett B, Boyes DC, Nasrallah ME and Nasrallah JB (1991) Molecular cloning of a putative receptor protein kinase gene encoded at the self-incompatibility locus of Brassica oleracea. Proc Natl Acad Sci USA 88: 8816–8820

    PubMed  CAS  Google Scholar 

  • Sweigert JA, Carroll AM, Kang S, Farrall L, Chumley FG and Valent B (1995) Identification, cloning, and characterization of PWL2, a gene for host species specificity in the rice blast fungus. Plant Cell 7: 1221–1233

    Google Scholar 

  • Swords KMM, Dahlbeck D, Kearney B, Roy M and Staskawicz BJ (1996) Spontaneous and induced mutations in a single open reading frame alter both virulence and avirulence in Xanthomonas campestris pv. vesicatoria avrBs2. J Bacteriol 178: 4661–4669

    CAS  Google Scholar 

  • Tang X, Frederick RD, Zhou J, Halterman DA, Jia Y and Martin GB (1996) Initiation of plant disease resistance by physical interaction of AvrPto and Pto kinase. Science 274: 2060–2063

    PubMed  CAS  Google Scholar 

  • Taraporewala ZF and Culver JN (1996) Identification of an elicitor active site within the three-dimensional structure of the tobacco mosaic tobamovirus coat protein. Plant Cell: 169–178

    Google Scholar 

  • Tenhaken R, Levine A, Brisson LF, Dixon RA and Lamb CJ (1995) Function of the oxidative burst in hypersensitive disease resistance. Proc Natl Acad Sci USA 92: 4158–4163

    PubMed  CAS  Google Scholar 

  • Thilmony RL, Chen ZT, Bressan RA and Martin GB (1995) Expression of the tomato Pto gene in tobacco enhances resistance to Pseudomonas syringae pv. tabaci expressing avrPto. Plant Cell 7: 1529–1536

    CAS  Google Scholar 

  • Thuleau P, Ward JM, Ranjeva R and Schroeder JI (1994) Voltage-dependent calcium-permeable channels in the plasma membrane of a higher plant cell. EMBO J 13: 2970–2975

    PubMed  CAS  Google Scholar 

  • Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302: 575–581

    PubMed  CAS  Google Scholar 

  • Toyoda K, Shiraishi T, Yamada T, Ichinose Y and Oku H (1993) Rapid changes in polyphosphoinositide metabolism in pea in response to fungal signals. Plant & Cell Physiol 34: 729–735

    CAS  Google Scholar 

  • Umemoto N, Kakitani M, Isamatsu, A, Yoshikawa M, Yamaoka N and Ishida I (1997) The structure and function of a soybean β-glucan-elicitor-binding protein. Proc Nat Acad Sci USA 94: 1029–1034

    PubMed  CAS  Google Scholar 

  • Van den Ackerveken GFJM, Vossen P and De Wit PJGM (1993) The Avr9 race-specific elicitor of Cladosporium fulvum is processed by endogenous and plant proteases. Plant Physiol. 103: 91–96

    PubMed  Google Scholar 

  • Van den Ackerveken GF, Marois E and Bonas U (1996) Recognition of the bacterial avirulence protein AvrBs3 occurs inside the host plant cell. Cell 87: 1307–1316

    PubMed  Google Scholar 

  • Van der Plank JE (1968) Disease Resistance in Plants. Academic Press, New York

    Google Scholar 

  • Vernooij B, Friedrich L, Morse A, Resit R, Kolditz-Jawhar R, Ward E, Uknes S, Kessmann H and Ryals J (1994) Salicylic acid is not the translocated signal responsible for inducing systemic acquired resistance but is required in signal transduction. Plant Cell 6: 959–965

    PubMed  CAS  Google Scholar 

  • Weber H, Schultze S, Pfitzner AJ (1993) Two amino substitutions in the tomato mosaic virus 30-kilodalton movement protein confer the ability to overcome the Tm2 2resistance gene in the tomato. J Gen Virol 67: 6432–6438

    CAS  Google Scholar 

  • West CA (1981) Fungal elicitors of the phytoalexin response in higher plants. Naturwissenschaften 68: 447–457

    CAS  Google Scholar 

  • Whitham S, Dinesh-Kumar SP, Choi D, Hehl R, Corr C and Baker B (1994) The product of the tobacco mosaic virus resistance gene N: similarity to toll and the interleukin-1 receptor. Cell 78: 1101–1115

    PubMed  CAS  Google Scholar 

  • Whitham S, McCormick S and Baker B (1996) The N gene of tobacco confers resistance to tobacco mosaic virus in transgenic tomato. Proc Natl Acad Sci USA 93: 8776–8781

    PubMed  CAS  Google Scholar 

  • Xiao YH and Hutcheson SW (1994) A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 176: 3089–3091

    PubMed  CAS  Google Scholar 

  • Xiao YH, Heu S, Yi J, Lu Y and Hutcheson SW (1994) Identification of a putative alternate sigma factor and characterization of a multicomponent regulation cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol 176: 1025–1036

    CAS  Google Scholar 

  • Xu Y, Chang PFL, Liu D, Narasimhan ML, Raghothama KG, Hasegawa PM and Bressan RA (1994) Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6: 1077–1085

    PubMed  CAS  Google Scholar 

  • Yang YN and Gabriel DW (1995) Xanthomonas avirulence/pathogenicity gene family encodes functional plant nuclear targeting signals. Mol Plant-Microbe Interact 8: 627–631

    PubMed  CAS  Google Scholar 

  • Yang YN, Yuan QP and Gabriel DW (1996) Watersoaking function(s) of XcmH1005 are redundantly encoded by members of the Xanthomonas avr/pth gene family. Mol Plant-Microbe Interact 9: 105–113

    CAS  Google Scholar 

  • Yoder MD and Jurnak F (1995) The parallel β helix and other coiled folds. FASEB Journal 9: 335–342

    PubMed  CAS  Google Scholar 

  • Yoder MD, Keen NT and Jurnak F (1993) New domain motif: the structure of pectate lyase C, a secreted plant virulence factor. Science 260: 1503–1507

    PubMed  CAS  Google Scholar 

  • Yoshimura S, Yamanouchi U, Katayose Y, Toki S, Wang Z-X, Kono I, Kurata N, Yano M, Iwata N and Sasaki T (1998) Expression of Xa 1, a bacterial blight-resistance gene in rice, is induced by bacterial inoculation. Proc Natl Acad Sci USA 95: 1663–1668

    PubMed  CAS  Google Scholar 

  • Yu YG, Buss GR and Maroof MAS (1996) Isolation of a superfamily of candidate disease-resistance genes in soybean based on a conserved nucleotide-binding site. Proc Natl Acad Sci USA 93: 11751–11756

    PubMed  CAS  Google Scholar 

  • Yuan J and He SY (1996) The Pseudomonas syringae hrp regulation and secretion system controls the production and secretion of multiple extracellular proteins. J Bacteriol 178: 6399–6402

    PubMed  CAS  Google Scholar 

  • Yucel I and Keen NT (1994) Amino acid residues required for the activity of avrD alleles. Mol Plant-Microbe Interact 7: 140–147

    PubMed  CAS  Google Scholar 

  • Yucel I, Boyd C, Debnam Q and Keen NT (1994a) Two different classes of avrD alleles occur in pathovars of Pseudomonas syringae. Mol Plant-Microbe Interact 7 131–139

    PubMed  CAS  Google Scholar 

  • Yucel I, Midland SL, Sims JJ and Keen NT (1994b) Class I and class II avrD alleles direct the production of different products in gram-negative bacteria. Mol Plant-Microbe Interact 7 148–150

    PubMed  CAS  Google Scholar 

  • Zhou JM, Loh Y-T, Bressan RA and Martin GB (1995) The tomato gene PtiI encodes a serine/threonine kinase that is phosphorylated by Pto and is involved in the hypersensitive response. Cell 83: 925–935

    PubMed  CAS  Google Scholar 

  • Zhu Q, Maher EA, Masoud S, Dixon RA and Lamb CJ (1994) Enhanced protection against fungal attack by constitutive co-expression of chitinase and glucanase genes in transgenic tobacco. Bio/Technology 12: 807–812

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Boller, T., Keen, N.T. (1999). Resistance Genes and the Perception and transduction of Elicitor Signals in Host-Pathogen Interactions. In: Slusarenko, A.J., Fraser, R.S.S., van Loon, L.C. (eds) Mechanisms of Resistance to Plant Diseases. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3937-3_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3937-3_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-0399-8

  • Online ISBN: 978-94-011-3937-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics