Skip to main content

Fundamentals of Interfacial Properties

  • Chapter
  • 1072 Accesses

Part of the book series: NATO Science Series ((NSSE,volume 366))

Abstract

Already in the eighteenth century it was realized that the capillary effect of fluids must arise from attractive forces between the constituents of matter, the molecules. This realization led to the idea that examination of the capillary effects could tell something about the attractive forces and possibly also about the molecules. Also modem physicists are interested in the explanation of the capillary phenomena in terms of intermolecular forces. TMs chapter highlights some of the applications of the square gradient theory of van der Waals [1] in modeling the behaviour of fluids near interfaces. For a more extensive discussion of this theory we refer to Rowlinson and Widom [2].

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Van der Waals, J.D. (1894) Thermodynamische Theorie der Kapillaritaet unter Voraussetzung stetiger Dichte Aenderung, Z. phys. Chem. 13, 657–725.

    Google Scholar 

  2. Rowlinso., J.S. and Widom, B. (1989) Molecular Theory of Capillarity, International Series of Monographs on Chemistry 8th Vol., Oxford University Press, Oxford.

    Google Scholar 

  3. Cahn, J.W., and Milliard, J.E. (1958) Free energy of a nonuniform system. I. Interfacial tee energy, J. Chem. Phys. 28, 258–267.

    Article  CAS  Google Scholar 

  4. Yang, A.J.M., Flemming, P.D., and GIBBS, J.H. (1976) Molecular theory of surface tension, J. Chem. phys. 64, 3732–3747.

    Google Scholar 

  5. Yang, A.J.M., Flemming, P.D., and Gibbs, J.H. (1977) Theory of the influence of gravity on liquid-vapor Interfaces, J. Ckem. Phys. 67, 74–80.

    CAS  Google Scholar 

  6. Bongiorno, V., Scriven, L.E., and Davis, H.T. (1976) Molecular theory of fluid interfaces, J. Coll. Interf. Sci. 57, 462–475.

    Article  CAS  Google Scholar 

  7. Carey, B.S., Scriven, L.E. and Davis, H.T. (1978) On the gradient theories of fluid interfacial stress and structure, J. Chem. Phys. 69, 5040–5049.

    Article  CAS  Google Scholar 

  8. Carey, B.S., Scrivot, L.E. and Davis, H.T. (1978) Semiemperical theory of surface tensions of pure normal alkalies and alcohols, AJChE J. 24, 1076–1080.

    Article  CAS  Google Scholar 

  9. Peng, D.Y., and Robinson, D.B. (1976) A new two-constant equation of state, Ind. Eng. Chem. Fundam. 15, 59–64.

    Article  CAS  Google Scholar 

  10. Reid, R.C., Prausnitz, J.M., and Poling, B.E. (1988) The Properties of Gases and Liquids, 4th edition, McGraw-Hill Book Co., Singapore.

    Google Scholar 

  11. Cornelisse, P.M.W. (1997) The gradient theory applied, simultaneous modelling of interfacial tension and phase behaviour, Ph. D-thesis, Delft University of Thechnology, The Netherlands.

    Google Scholar 

  12. Van der Waals, J. D. (1893) Verhandel.Konink.Akad.Weten., Amsterdam (Sect. 1) 1, 8, 1–56.

    Google Scholar 

  13. Ebner, C., Saam, W.F., and Stroud, D. (1976) Density-functional theory of simple classical fluids. I. Surfaces, Phys.Rev.A 14, 2264–2273.

    Article  Google Scholar 

  14. Comelisse, P.M.W., Peters, C.J., and de Swaan Axons, J. (1997) On the fundamentals of the gradient theory of van der Waais, J. Chem. Phys. 106, 9820–9834.

    Google Scholar 

  15. Fisk, S., and Widom, B. (1969) Structure and free energy of the interface between fluid phases in equilibrium, J. Chem.phys, 50, 3219–3227.

    Article  CAS  Google Scholar 

  16. Gupta, M.K., and Robinson, R.L. Jr (1987) Application of gradient theory of inhomogeneous fluid to prediction of low interfacial tensions in CO2/hydrocarbon systems, SPE Res. Eng. 2, 528–530.

    Google Scholar 

  17. Vargaftik, N.B. (1975) Tables on Thermophysical Properties of Liquids and Gases, Hemisphere Publishing Corporation, John Wiley & Sons Inc., New York, USA.

    Google Scholar 

  18. Jasper, J.J. (1972) The surface tension of pure liquid compounds, J.Phys.Chem.Ref.Data 1, 841–1009.

    Article  CAS  Google Scholar 

  19. Donohue, M.D., and Vimalchand, P. (1988) The perturbed-hard-chain theory — Extensions and Applications, Fluid Phase Equilibria 40, 185–211.

    Article  CAS  Google Scholar 

  20. Ikonotnou, C.D., and Donohue, M.D. (1986) Thermodynamics of hydrogen-bonded molecules: the associated perturbed anisotropic chain theory, AJChE J. 32, 1716–1725.

    Article  Google Scholar 

  21. Econoraou, I.G., and Denohug M.D. (1991) Chemical, quasi-chemical and perturbation theories for associating fluids, AIChE J. 37, 1875–4894.

    Article  Google Scholar 

  22. Nagarajan, N. and Robinson, R.L. (1986) Equilibrium phase composition, phase densities, and interfacial tensions for CO2 + hydrocarbon systems. 2. CO2 + n-dodecane, J. Chem. Eng. Data 31, 168–171.

    Article  CAS  Google Scholar 

  23. Cornelisse, P.M.W., Peters, C.J., and de Swaan Arons, J. (1993) Application of the Peng-Robinson equation of state to calculate interfacial tensions and profite at vapor-liquid interfaces, Fluid Phase Equilibria 82, 119–129.

    CAS  Google Scholar 

  24. Sahimi, M., Davis, H.T., and Scriven, L.E. (1985) Thermodynamic modeling of phase and tension behavior of CO2/Hydrocarbon systems, SPE J. April, 235–254.

    Google Scholar 

  25. Sahimi M., and Taylor, B.N. (1991) Surface tension of binary liquid-vapor mixtures — A comparison of mean-field and scaling theories, J. Chem.Phys. 95, 6749–6761.

    Article  CAS  Google Scholar 

  26. Aiekseeva, M.V., and Moiseenko, M.F. (1982) Experimental study and calculation of liquid-vapor equilibria in the n-propanol/hexane/n-decanol system, Khim. Thermodin.Rastorov 5, 179–195.

    Google Scholar 

  27. Papaionmou, D., and Panayiotou, G. (1994) Surface tensions and relative adsorptions in hydrogen-bonded systems, J.Chem.Eng.Data 39, 457–462.

    Article  Google Scholar 

  28. Dulitskaya, K.A. (1945) Vapor pressure of binary systems, Zh.Ob.Shch.Khim. 15, 9–21.

    CAS  Google Scholar 

  29. Vázquez, G., Alvarez, E., and Navaza, J.M. (1995) Surface tension of alcohol + water from 20 to 50 °C, J.Chem.Eng.Data 40, 611–614.

    Article  Google Scholar 

  30. Udovcoko, V.V., and Fatkalina, L.G. (1952) Solubility in the system ethylalcohol-1,2-dichloroethane-water, zh.Fiz.Khim, 26, 1438.

    Google Scholar 

  31. Harrison, K.L., Johnston, K.P., and Sanchhen, I.C. (1996) Effect of surfactants on the interfacial tension between supwcritical carbon dioxide and polyethylene glycol, Langmuir, 12, 2637–2644.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2000 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Cornelisse, P.M.W., Peters, C.J. (2000). Fundamentals of Interfacial Properties. In: Kiran, E., Debenedetti, P.G., Peters, C.J. (eds) Supercritical Fluids. NATO Science Series, vol 366. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3929-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3929-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-7923-6236-4

  • Online ISBN: 978-94-011-3929-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics