Skip to main content

Sintering of Silicon Carbide

  • Chapter

Abstract

Sintering behavior and sintering techniques of silicon carbide are reviewed. Work on sintering experiments with silicon carbide containing B-C and Al-B-C is referred to. First, the driving energy of sintering, the non-sinterability of silicon carbide powder, and the role of additives are explained by the free energy theory of mass transport. Second, silicon carbide sintering techniques are reported. In the case of B-C addition, it is emphasized that optimization of added B content, sintering atmosphere and heating rate are important factors controlling the density of the sintered SiC. Sinterability of Al-doped SiC powder and sintering by the addition of Al2O3, Al-C, Al-B-C and other compounds are summarized.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alliegro, R. A., Coffin, L. B. & Tinklepaugh, J. R., Pressuresintered silicon carbide. J. Am. Ceram. Soc., 39(11) (1956), 386–389.

    Article  CAS  Google Scholar 

  2. Prochazka, S., The role of boron and carbon in the sintering of silicon carbide. In Special Ceramics, Vol. 6, British Ceramic Research Association, 1975, pp. 171–181.

    CAS  Google Scholar 

  3. Inomata, Y., Free energy theory of the initial sintering of solids. J. Ceram. Soc. Japan, 90(9) (1982), 527–531.

    CAS  Google Scholar 

  4. Inomata, Y., Free energy theory of material transport for sintering and diffusional creep. In Proc. Int. Symp. on Ceramic Components for Engine, ed. S. Sōmiya et al. KTK Scientific Publishers, Tokyo, 1984, pp. 253–261.

    Google Scholar 

  5. Inomata, Y., Reconstruction of the theory of sintering. Ceramics Japan, 22(6) (1987), 467–472.

    Google Scholar 

  6. Schober, T. & Balluffi, R. W., Quantitative observation of misfit dislocation arrays in low and high angle twist grain boundaries. Phil. Mag., 21 (1973), 109–123.

    Article  Google Scholar 

  7. Kimura, S., Yasuda, E., Sakai, M., Kim, H. J. & Moriyoshi, Y., Grain boundaries of MgO bicrystals. J. Ceram. Soc. Japan, 94(8) (1986), 795–800.

    CAS  Google Scholar 

  8. Fujimoto, M., High resolution transmission electron microscopy of a coincidence site boundary in BaTiO3 ceramics. Jap. J. Appl. Phys., 26(8) (1987), L1344–L1347.

    Article  CAS  Google Scholar 

  9. Inoue, Z., Uemura, Y. & Inomata, Y., A SiC-bicrystal junction on the (0001) plane. J. Mater. Sci., 16 (1981), 2297–2302.

    Article  CAS  Google Scholar 

  10. Ichinose, H., Inomata, Y. & Ishida, Y., HREM analysis of SiC grain boundary structure. J. Ceram. Soc. Japan, 94(4) (1987), 415–418.

    Google Scholar 

  11. Uemura, Y., Inomata, Y. & Ichinose, H., Boundary structures of SiC bicrystal. J. Ceram. Soc. Japan, 95(9) (1987), 841–844.

    CAS  Google Scholar 

  12. Uemura, Y., Inomata, Y. & Inoue, Z., A grain boundary of α-SiC bicrystals. J. Mater. Sci., 16 (1981), 2333–2335.

    Google Scholar 

  13. Hannick, R. H. J., Bando, Y., Tanaka, H. & Inomata, Y., Microstructural investigation and indentation response of pressureless-sintered α and β-SiC. J. Mater. Sci., 23 (1988), 2093–2101.

    Google Scholar 

  14. Suzuki, H. & Hase, T., Boron transport and change of lattice parameter during sintering of β-SiC. J. Am. Ceram. Soc., 63(5–6) (1980), 349–350.

    Article  CAS  Google Scholar 

  15. Inomata, Y., In Development of sintering additives in SiC ceramics. Report of 124 Committee of Japan Society for Promotion of Science, No. 81, 1987.

    Google Scholar 

  16. Hase, T., Suzuki, H. & Ueda, H., High temperature strength of pressureless-sintered SiC. J. Ceram. Soc. Japan, 87(10) (1979), 522–528.

    CAS  Google Scholar 

  17. Tanaka, H., Inomata, Y., Tsukuda, K. & Hagimura, A., Normal sintering of β-SiC powder. J. Ceram. Soc. Japan, 92(8) (1984), 461–465.

    CAS  Google Scholar 

  18. Prochazka, S., Japanese Patent Gazette Shou 57-32035, 1982.

    Google Scholar 

  19. Tanaka, H., Inomata, Y. & Tsukuda, K., Japanese Patent Gazette Shou 61-3303, 1986, U.S. Patent 4579704.

    Google Scholar 

  20. Orange, G., Tanaka, H. & Fantozzi, G., Fracture toughness of pressureless sintered silicon carbide: a comparison of K IC measurement methods. Ceramics International, 13 (1987), 159–165.

    Article  CAS  Google Scholar 

  21. Suzuki, K., Relation between microstructure and fracture toughness of ceramics. Ceramics Japan 21(7) (1986), 590–597.

    CAS  Google Scholar 

  22. Japanese Patent Application 49-7311, 1974.

    Google Scholar 

  23. Tanaka, H., Inomata, Y. & Kawabata, H., Strength of hot-pressed SiC by the addition of Al and B. J. Ceram. Soc. Japan, 88(9) (1980), 570–574.

    CAS  Google Scholar 

  24. Böcker, W., Landfermann, H. & Hausner, H., Sintering of alpha silicon carbide with additions of aluminum. Powder Met. Int., 11(2) (1979), 83–85.

    Google Scholar 

  25. Ashcroft, W., The tensile and bend strengths of silicon nitride and hot-pressed silicon carbide. In Special Ceramics 6, ed. P. Popper et al. The British Ceramic Research Association, 1975, pp. 245–260.

    Google Scholar 

  26. Lange, F. F., Hot-pressing behaviour of silicon carbide powders with additions of aluminium oxide. J. Mater. Sci., 10 (1975), 314–320.

    Article  CAS  Google Scholar 

  27. Suzuki, K. & Furukawa, K., HIP treatment of SiC. In FC Report, Japan Fine Ceramics Assocation, 3(4) (1984), 15–20.

    Google Scholar 

  28. Tanaka, H. & Yamashita, Y., Japanese Patent Gazette Shou 52-140516, 1977.

    Google Scholar 

  29. Ruh, R., Zangvil, A. & Barlowe, J., Elastic properties of SiC, AlN and their solid solutions and particulate composites. Am. Ceram. Soc. Bull., 64(10) (1985), 1368–1373.

    CAS  Google Scholar 

  30. Cutler, I. B., Miller, P. D., Rafaniello, W., Park, H. K., Thompson, D. P. & Jack, K. H., New materials in the Si-C-Al-O-N and related systems. Nature, 275 (1978), 434–435.

    Article  CAS  Google Scholar 

  31. Shimada, M., Sakai, K. & Koizumi, M., Fabrication and characterization of AlN-SiC ceramics. In Proc. Int. Symp. on Ceramic Components for Engines. KTK Scientific Publishers, Tokyo, 1984, pp. 466–472.

    Google Scholar 

  32. Patience, M. M., England, R. J., Thompson, D. P. & Jack, K. H., Ceramic alloys of silicon carbide with aluminium nitride and nitrogen. In Proc. Int. Symp. on Ceramic Components for Engines. KTK Scientific Publishers, Tokyo, 1984, pp. 473–479.

    Google Scholar 

  33. Omori, M. & Takei, H., Pressureless sintering of SiC. J. Am. Ceram. Soc., 65(6) (1982), C–92.

    Article  Google Scholar 

  34. Coppola, J. A. et al. Japanese Patent Application Shou 53-121810, 1978.

    Google Scholar 

  35. Stutz, D. H., Prochazka, S. & Lorenz, J., Sintering and microstructure formation of β-silicon carbide. J. Am. Ceram. Soc., 68(9) (1985), 479–482.

    Article  CAS  Google Scholar 

  36. Shinozaki, S., Williams, R. M., Juterbock, B. N., Donlon, W. T., Hangas, J. & Peters, C. R., Microstructure developments in pressureless sintered β-SiC materials with Al, B and C additions. Am. Ceram. Soc. Bull., 64(10) (1985), 1389–1393.

    CAS  Google Scholar 

  37. Tanaka, H., Inomata, Y., Hara, K. & Hasegawa, H., Normal sintering of Al-doped β-SiC. J. Mater. Sci. Letters, 4 (1985), 315–317.

    Article  CAS  Google Scholar 

  38. Inomata, Y., Tanaka, H., Inoue, Z. & Kawabata, H., Phase relation in SiC-Al4C3-B4C system at 1800°C. J. Ceram. Soc. Japan, 88(6) (1980), 353–355.

    CAS  Google Scholar 

  39. Tanaka, H., Investigation on the sintering of SiC. Report of National Institute for Research in Inorganic Materials No. 52, 1987, pp. 24–29.

    Google Scholar 

  40. Tsunoda, K., Horibe, S. & Maruyama, N., Investigation on high temperature fatigue. Report on Investigation on Controlling Surface and Grain Boundary for Development of High Performance Materials, Research and Development Bureau, Science and Technology Agency of Japan, 1986.

    Google Scholar 

  41. Ura, M. & Asai, O., Development and application of electrical insulating SiC sintered material. FC Report, Japan Fine Ceramic Association, 1(4) (1983) 5–13.

    Google Scholar 

  42. Sakai, T. & Hirosaki, N., Hot-pressing of SiC with additions of BaO and C. J. Am. Ceram. Soc., 68(8) (1985), C191–C193.

    Article  Google Scholar 

  43. Sakai, T. & Aikawa, T., Influence of rare earths on the sintering of SiC. Abstracts of 24th Symposium on Basic Science of Ceramics, the Ceramic Society of Japan, 1986, p. 5.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd

About this chapter

Cite this chapter

Tanaka, H. (1991). Sintering of Silicon Carbide. In: Sömiya, S., Inomata, Y. (eds) Silicon Carbide Ceramics—1. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3842-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3842-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-560-0

  • Online ISBN: 978-94-011-3842-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics