Advertisement

Keywords

Renal Insufficiency Dialysis Patient Chemical Formula Plasma Protein Binding Common Side Effect 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

Main references General

  1. Pfeffer M, Schor JM, Gluck et al.: Human urinary excretion of orally administered anisotropine methylbromide. J Pharm Sci 57: 36, 1968PubMedCrossRefGoogle Scholar
  2. Pfeffer M, Schor JM, Bolton S et al.: Human urinary excretion of the quaternary ammonium compounds anisotropine methylbromide and propantheline bromide. J Pharm Sci 57: 1375, 1968PubMedCrossRefGoogle Scholar

Main references

  1. Hengstmann JH, Konen W, Konen C, Eichelbaum M, Dengler HJ: The physiological disposition of p-octopamine in man. Naunyn Schmiedeberg’s Arch Pharmacol 283: 93, 1974CrossRefGoogle Scholar
  2. Kakimoto Y, Armstrong MD: On the identification of octopamine in mammals. J Biol Chem 237: 422, 1962PubMedGoogle Scholar

Main references

  1. Chan MK, Chau PY, Chan WWN: Ofloxacin pharmacokinetics in patients on continuous ambulatory peritoneal dialysis. Clin Nephrol 28: 277, 1987PubMedGoogle Scholar
  2. Dagrosa E, Seeger K, Malerczyk V, Lameire N: Pharmakokinetik von Ofloxacin (HOE 280). FAC 3(5): 665, 1984Google Scholar
  3. Dörfler A, Schulz W, Burkhardt F, Zichner M: Untersuchungen zur Pharmakokinetik von Ofloxazin bei Dialysepatienten. Nieren- und Hochdruckkrankh 15: 374, 1986Google Scholar
  4. Nakano H, Nihira H, Kamiya A, Hori R: Influence of renal impairment on multiple-dose pharmacokinetics of ofloxacin. In: Ofloxacin DL-8280. Selected proceedings from 24th interscience conference on microbial agents and chemotherapy, 1984. Amsterdam: Excerpta Medica, 1984 p 63–8Google Scholar
  5. Schulz W, Dörfler A: Ofloxacin-Behandlung bei nephrologischen Problempatienten mit unterschiedlich ausgeprägter chronischer Niereninsuffizienz (inkl. Dialyse-Behandlung). Vorläufige Ergebnisse. Infection 14 (Suppl 1): S97, 1986PubMedCrossRefGoogle Scholar
  6. Smith JT: Awakening the slumbering potential of the 4-quinolone antibacterials. Pharm J 233: 299, 1984Google Scholar
  7. Verho M, Dagrosa EE, Usinger P, Grötsch H, Malerczyk V, Uchida M, Rangoonwala R: Renal tolerance of ofloxacin, a new gyrase inhibitor. Pharmatherapeutica 4: 306, 1985PubMedGoogle Scholar

Main reference

  1. Ottn H, Plempel M, Siegenthaler W, (eds.) Oleandomycin. In: Antibiotika Fiebel, 4th ed. Stuttgart: Georg Thieme, 1975 p 485Google Scholar

Main references

  1. Drabner J, Bauer H, Schwerd W: Der Nachweis von Opipramol (Insidon) und Nortriptylin (Nortrilen) im Urin. Arch Toxicol 21: 367, 1966CrossRefGoogle Scholar
  2. Herrmann B: Untersuchungen über den Stoffwechsel von 4-[3-(5H-Dibenzo(b,f)azepin-5-yl)-propyl]-1-(2-hydroxy-äthyl)-piper-azin-dihydrochlorid. Arzneimittelforschung (Drug Res) 14: 219, 1964Google Scholar
  3. Klerman GL, Cole JO: Clinical pharmacology of imipramine and related antidepressant compounds. Pharmacol Rev 17: 101, 1965PubMedGoogle Scholar

Main references

  1. Boemer H, Falkenhagen D, Rohmann H, Krueger M: The influence of Alupent and propranolol in patients with limited renal function on plasma renin activity, haemodynamic parameters and clearance values. Z Urol Nephrol 69: 877, 1976Google Scholar
  2. Dengler HJ, Hengstmann JH: Metabolism and pharmacokinetics of orciprenaline in various animal species and man. Arch Int Pharmacodyn Ther 223: 71, 1976PubMedGoogle Scholar
  3. Martindale. The extra pharmacopoeia. 29th ed. London: The Pharmaceutical Press, 1989: 1472, orciprenaline sulphateGoogle Scholar

Main references

  1. Martindale. The extra pharmacopoeia. 29th ed. London: The Pharmaceutical Press, 1989: 674, ornidazoleGoogle Scholar
  2. Merdjan H, Baumelou A, Diquet B, Chick O, Singlas E: Pharmacokinetics of ornidazole in patients with renal insufficiency; influence of haemodialysis and peritoneal dialysis. Br J Clin Pharmacol 19: 211, 1985PubMedCrossRefGoogle Scholar

Main references

  1. Beckett AH, Khan F: Metabolism, distribution and excretion of orphenadrine in man. J Pharm Pharmacol 23 (Suppl): 222, 1971CrossRefGoogle Scholar
  2. Ellison T, Snyder A, Bolger J, Okun R: Metabolism of orphenadrine citrate in man. J Pharmacol Exp Ther 176: 284, 1971PubMedGoogle Scholar
  3. Hespe W, deRoos AM, Nauta WT: Investigation into the metabolic fate of orphenadrine hydrochloride after oral administration to male rats. Arch Int Pharmacodyn 159: 180, 1965Google Scholar
  4. Seyffart G: Antihistamines and other sedatives. F. Ethinamate and other sedatives. In: Haddad LM, Winchester JF (eds): Clinical management of poisoning and drug overdose. Philadelphia: Saunders, 1990, chapter 46, p. 850Google Scholar

Main references

  1. Brass H, Phillipps H: Die Elimination von alpha-Acetyldigoxin und K-Strophanthin bei Niereninsuffizienz. Klin Wochenschr 48: 972, 1970PubMedCrossRefGoogle Scholar
  2. Demers HG: Digitalisbehandlung bei eingeschränkter Nierenfunktion. Nieren- und Hochdruckkrankh 6: 21, 1977Google Scholar
  3. Greef K, Köhler E: Zur Pharmakokinetik des g-Strophanthins. Verh Dtsch Ges Herz Kreislaufforsch 40: 301, 1975CrossRefGoogle Scholar
  4. Kramer P: Digitalis pharmacokinetics and therapy with respect to impaired renal function. Klin Wochenschr 55: 1, 1977PubMedCrossRefGoogle Scholar
  5. Seiden R, Margolies MN, Smith TW: Renal and gastrointestinal excretion of ouabain in dog and man. J Pharmacol Exp Ther 188: 615, 1974Google Scholar
  6. Selden R, Haynie G: Ouabain plasma level kinetics and removal by dialysis in chronic renal failure. Ann Intern Med 83: 15, 1975PubMedGoogle Scholar

Main references

  1. Arnoll WM, Kellar RJ: Hypertension associated with experimental oxalate nephritis. Br J Exp Pathol 16: 265, 1935Google Scholar
  2. Gough J: Mitochondrial changes in experimental oxalate and uranium nephritis. J Pathol 34: 423, 1931CrossRefGoogle Scholar
  3. Koch F: Niereninsuffizienz durch Oxalsäurevergiftung. Dtsch Arch Klin Med 169: 100, 1930Google Scholar

Main references

  1. Bulger RJ, Lindholm DD, Murray JS, Kirby WMM: Effect of uremia on methicillin and oxacillin blood levels. Excretion and inactivation in renal failure and hemodialysis. JAMA 187: 319, 1964PubMedCrossRefGoogle Scholar
  2. Goodman and Gilman’s The pharmacological basis of therapeutics. 7th ed. New York: Macmillan, 1985: 1115, chapter 50, Antimicrobial agents by GL Mandell and MA SandeGoogle Scholar
  3. Martindale; The extra pharmacopoeia. 29th ed. London: The Pharmaceutical Press, 1989: 277, oxacillin sodiumGoogle Scholar

Main reference

  1. Karim A, Ranney RE, Zagarella J, Maibach HI: Oxandrolone disposition and metabolism in man. Clin Pharmacol Ther 14: 862, 1973PubMedGoogle Scholar

Main references

  1. Davies BH, Rocchiccioli K: Oxatomide plasma levels in man during chronic dosing. Pharmatherapeutica 3: 365, 1983PubMedGoogle Scholar
  2. Meuldermans W, Hendrickx J, Knaeps F, Lauwers W, Heykants J, Grindel MJ: Plasma levels, biotransformation and excretion of oxatomide (R 35 443) in rats, dogs and man. Xenobiotica 14: 445, 1984PubMedCrossRefGoogle Scholar
  3. Richards DM, Brogden RM, Heel RC, Speight TM, Avery GS: Oxatomide: A review of its pharmacodynamic properties and therapeutic efficacy. Drugs 27: 210, 1984PubMedCrossRefGoogle Scholar

Main references

  1. Busch U, Molzahn M, Bozler G, Koss FW: Pharmacokinetics of oxazepam following multiple administration in volunteers and patients with chronic renal disease. Arzneimittelforschung (Drug Res) 31(II): 1507, 1981Google Scholar
  2. Greenblatt DJ: Clinical pharmacokinetics of oxazepam and lorazepam. Clin Pharmacokinet 6: 89, 1981PubMedCrossRefGoogle Scholar
  3. Greenblatt DJ, Murray TG, Audet PR, Locniskar A, Koepke HH, Walker BR: Multiple-dose kinetics and dialyzability of oxazepam in renal insufficiency. Nephron 34: 234, 1983PubMedCrossRefGoogle Scholar
  4. Murray TG, Chiang ST, Koepke HH, Walker BR: Renal disease, age, and oxazepam kinetics. Clin Pharmacol Ther 30: 805, 1981PubMedCrossRefGoogle Scholar
  5. Ochs HR, Greenblatt DJ, Klehr U: Disposition of oxazepam in patients on maintenance hemodialysis. Klin Wochenschr 62: 765, 1984PubMedCrossRefGoogle Scholar
  6. Odar-Cederlöf I, Vessman J, Alvan G, Sjöqvist F: Oxazepam disposition in uremic patients. Acta Pharmacol Toxicol (Copenh) 40 (Suppl 1): 52, 1977Google Scholar

Main references

  1. Atlas E, Clark H, Silverblatt F, Turck M: Nalidixic acid and oxalinic acid in the treatment of chronic bacteriuria. Ann Intern Med 70: 713, 1969PubMedGoogle Scholar
  2. Otten H, Plempel M, Siegenthaler W, (eds.): Sulfonamide. Antibiotika Fiebel, 4th ed. Stuttgart: Georg Thieme, 1975 p 110Google Scholar
  3. Ringel SM, Turner FJ, Undo FL, Roemer S, Direnga BA, Schwartz BS: Oxalinic acid, a new synthetic antimicrobial agent. II. Bactericidal rate and resistance development. Antimicrob Agents Chemother 7: 480, 1967PubMedGoogle Scholar

Main references

  1. Dayer P, Glasson Ph, Balant L, Striberni R, Fabre J: Differential consequences of renal failure on the pharmacokinetics of exprenolol and its main metabolite. Eur J Drug Metab Pharmacokin 8: 181, 1983CrossRefGoogle Scholar
  2. Kendall MJ, John VA: Oxprenolol: Clinical pharmacology, pharmacokinetics, and pharmacodynamics. Am J Cardiol 52: 27D, 1983Google Scholar
  3. Mason WD, Winer N: Pharmacokinetics of Oxprenolol in normal subjects. Clin Pharmacol Ther 20: 401, 1976PubMedGoogle Scholar
  4. Riess W, Huerzeler H, Raschdorf F: The metabolites of Oxprenolol (Trasicor) in man. Xenobiotica 4: 365, 1974PubMedCrossRefGoogle Scholar
  5. Riess W, Brechbühler S, Theobald W: Part I. Beta-blockers — pharmacological and haemodynamic aspects. Aust NZ J Med 6: 4, 1976CrossRefGoogle Scholar
  6. Russo ME, Covinsky JO: Oxprenolol hydrochloride: Pharmacology, pharmacokinetics, adverse effects and clinical efficacy. Pharmacotherapy 3 (2 Pt 1): 68, 1983PubMedGoogle Scholar
  7. Taylor SH: Oxprenolol in clinical practice. Am J Cardiol 52: 34D, 1983Google Scholar
  8. Winchester JF: Drug profile: Trasicor. J Int Med Res 2: 448, 1974Google Scholar

Main reference

  1. Aaltonen L, Allonen H, Lisalo E, Juhakoski A, Kleimola T, Sellman R: Antimuscarinic activity of oxybutynin in the human plasma quantitated by a radioreceptor assay. Acta Pharmacol Toxicol (Copenh) 55: 100, 1984CrossRefGoogle Scholar

Main references

  1. Appel E, Planz G, Palm D, Grobecker H, Stratmann D, Donike M: Excretion of norephedrine by man after oral administration of oxyfedrine. Eur J Clin Pharmacol 8: 161, 1975PubMedCrossRefGoogle Scholar
  2. Sakai K, Sugano S, Watanabe I, Fukushima M, Takanashi S, Nishii Y: Metabolism of oxyfedrine. Naunyn Schmiedebergs Arch Pharmacol 275: 323, 1972PubMedCrossRefGoogle Scholar
  3. Thiemer K, Stadler R: Biochemische Untersuchungen übet L-3-Methoxy-ω-(1 -hydroxy-1-phenyl-isopropyl-amino)-propiophenon·Hydrochlorid. Arzneimittelforschung (Drug Res) 16: 1502, 1966Google Scholar

Main reference

  1. Bambauer R, Stolz D, El-Saadi R, Stelzer K, Jutzier GA: Verhalten von Oxypolygelatine (Gelifundol) bei Patienten mit dialysepflichtiger Niereninsuffizienz. Infusionsther Klin Ernähr 11: 157. 1984PubMedGoogle Scholar

Main references

  1. Appel GB, Neu HC: The nephrotoxicity of antimicrobial agents (First of three parts). N Engl J Med 296: 663, 1977tics.PubMedCrossRefGoogle Scholar
  2. Goodman and Gilman’s The Pharmacological basis of therapeu 7th ed. New York: Macmillan, 1985: 1170, chapter 52, Antimicrobial agents by MA Sande and GL MandellGoogle Scholar
  3. Martindale. The extra pharmacopoeia. 29th ed. London: The Pharmaceutical Press, 1989: 279, Oxytetracycline.Google Scholar

Main reference

  1. Martindale. The extra pharmacopoeia. 29th ed. London: The Pharmaceutical Press, 1989: 1146, oxytocinGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Günter Seyffart
    • 1
  1. 1.Dialysis CenterBad HomburgGermany

Personalised recommendations