Skip to main content

Trapped Anions in Organic Crystals

  • Chapter
Radical Ionic Systems

Part of the book series: Topics in Molecular Organization and Engineering ((MOOE,volume 6))

Abstract

This chapter describes the structure and reaction of the radical anions of organic molecules studied mainly by single crystal ESR and ENDOR spectroscopy. The study makes it possible to precisely determine ESR parameters such as g, hyperfine, and quadrupole tensors. The geometrical and electronic structures of the radicals can be deduced from these parameters by comparing the tensor axes with the molecular orientation in the crystals. Analysis of the matrix ENDOR spectra yields information on the crystalline environment of the radicals which provides for a better understanding of the radical reactions in crystals. The radical anions can be formed along with the counter cations by irradiating the crystal with ionizing radiation. The anions are usually unstable but can be trapped in low temperature solids. Firstly, a characterization of the anions is given in terms of simple molecular orbital theory. Secondly, the details of the structures and reactions of the anions reflecting the electronic state, conformation, and crystalline environment of the radical are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. V. I. Vedereyev, L. V. Gurvich, V. N. Kondra’yev, and V.A. Medvedev: Bond Energies, Ionization Potential and Electron Affinities. Edward Arnold Ltd., London (1966).

    Google Scholar 

  2. Hand Book of Chemistry, Vol. Fundamentals II, 3-rd Ed. (Japanese) Ed. by Chem. Soc. Jpn., Maruzen Publisher, Tokyo, p. 11-588 (1984).

    Google Scholar 

  3. CRC Handbook of Chemistry and Physics, 58th ed. Ed. by R. C. Weast: CRC Press Inc., NY, pp. E67-68 (1978).

    Google Scholar 

  4. J. A. Pople: and D. L., Beveridge, Approximate Molecular Orbital Theory, McGraw-Hill Inc., NY, pp. 69–79 (1970).

    Google Scholar 

  5. M. A. Whitehead: ‘Semiempirical-All-Valence-Electron SCF-MO-CNDO Theory(III-2)’ in O. Sinanoglu and K. B. Wiberg (eds.), Sigma Molecular Orbital Theory, Yale University Press, New Haven and London, pp. 49–80 (1970).

    Google Scholar 

  6. H. Muto. K. Nunome, K. Toriyama, and M. Iwasaki: J.Chem. Phys. 93, 4898 (1989), and references cited therein.

    Article  CAS  Google Scholar 

  7. H. C. Box: Radiation Effect; ESR and ENDOR Analysis, Academic, New York, (1977).

    Google Scholar 

  8. M. Shiotani: Magn. Reson. Rev. 12, 333 (1987).

    CAS  Google Scholar 

  9. M.C.R. Symons: Chem. Soc. Rev. pp. 393–439 (1984).

    Google Scholar 

  10. W. Gordy, W. B. Ard, and H. Shield: Proc. Nat. Aca. Sci. 41. 996 (1955).

    Article  CAS  Google Scholar 

  11. I. Miyagawa and W. Gordy: J. Am. Chem. Soc. 83, 1036 (1961).

    Article  CAS  Google Scholar 

  12. H. C. Box, N. G. Freund, and K. T. Lilga: J. Chem. Phys. 42, 1471 (1965).

    Article  CAS  Google Scholar 

  13. J. E. Bennettand L. H. Gale: Trans. Faraday Soc. 64, 1174 (1968)

    Article  Google Scholar 

  14. J. W. Sinclair and M. H. Hanna: J. Phys. Chem. 71, 84 (1967).

    Article  CAS  Google Scholar 

  15. A. Minegishi. Y. Shinozaki, and G. Meshitsuka: J. Chem. Soc. Jpn. 40, 1549 (1967); ibid 41, 3035 (1968).

    Article  CAS  Google Scholar 

  16. P. B. Ayscough and A. K. Roy: Trans. Faraday Soc. 64, 582 (1968).

    Article  CAS  Google Scholar 

  17. I. Miyagawa, N. Tamura, and J. W. Cook, Jr.: J. Chem. Phys. 51, 3520 (1969).

    Article  CAS  Google Scholar 

  18. H. Muto and M. Iwasaki: J. Chem. Phys. 59, 4821 (1973).

    Article  CAS  Google Scholar 

  19. M. Iwasaki and H. Muto: J. Chem. Phys. 61, 5315 (1974).

    Article  CAS  Google Scholar 

  20. H. Muto, K. Nunome, and M. Iwasaki: J. Chem. Phys. 61, 5311 (1974).

    Article  CAS  Google Scholar 

  21. H. Muto, K. Nunome, and M. Iwasaki: J. Chem. Phys. 61, 1075 (1974).

    Article  CAS  Google Scholar 

  22. R. LoBrutto, E. E. Budzinski, and H. C. Box: J. Chem. Phys. 73, 6349 (1980).

    Article  CAS  Google Scholar 

  23. H. C. Box, E. E. Budzinski, and K. T. Lilga: J. Chem, Phys. 57, 4295 (1972).

    Article  CAS  Google Scholar 

  24. J. Sinclair and P. Codella: J. Chem. Phys. 59, 1569 (1973).

    Article  CAS  Google Scholar 

  25. H. Muto: Ph. D. Thesis, ESR and ENDOR study on the structure and reaction of radicals in amino acids and carboxylic acids irradiated, Nagoya University(Jpn) (1978).

    Google Scholar 

  26. D. J. Whelan: Chem. Rev. 69, 179 (1969).

    Article  CAS  Google Scholar 

  27. G. C. Moulton and G. McDearmon: J. Chem. Phys. 72, 1665 (1980).

    Article  CAS  Google Scholar 

  28. J. Sinclair and M. Hanna: J. Phys. Chem. 50, 2125 (1969).

    Article  CAS  Google Scholar 

  29. H. C. Box, H. G. Freund, K. T. Lilga, and E. E. Budzinski: J. Chem. Phys. 63, 2059 (1975).

    Article  CAS  Google Scholar 

  30. D. C. Straw and G. C. Moulton: J. Chem. Phys. 60, 1231 (1974).

    Article  CAS  Google Scholar 

  31. J. W. Wells: J. Chem. Phys. 52, 4062 (1970).

    Article  CAS  Google Scholar 

  32. J. Y. Lee and H. C. Box: J. Chem. Phys. 61, 428 (1974).

    Article  CAS  Google Scholar 

  33. C. L. Ko and H. C. Box: J. Chem. Phys. 55, 2446 (1971).

    Article  Google Scholar 

  34. G. C. Moulton and J. M. Coleman: J. Chem. Phys. 80, 4748 (1984).

    Article  CAS  Google Scholar 

  35. H. C. Box and E. E. Budzinski: J. Chem. Phys. 55, 2446 (1971).

    Article  CAS  Google Scholar 

  36. H. C. Box. E. E. Budzinski, and W. Potter: J. Chem. Phys. 55, 315 (1971).

    Article  CAS  Google Scholar 

  37. L. L. Finch, J. E. Johnson, and G. C. Moulton: J. Chem. Phys. 70, 3662 (1979).

    Article  CAS  Google Scholar 

  38. S. M. Adams, E. E. Budzinski, and H. C. Box: J. Chem. Phys. 65, 998 (1976).

    Article  CAS  Google Scholar 

  39. W. H. Nelson and C. R. Nave: J. Chem. Phys. 74, 2710 (1981); W. H. Nelson: J. Phys. Chem. 92, 554 (1988).

    Article  CAS  Google Scholar 

  40. H. C. Box and E. E. Budzinski: J. Chem. Phys. 60, 3337 (1974).

    Article  CAS  Google Scholar 

  41. F. Q. Ngo, E. E. Budzinski. and H. C. Box: J. Chem. Phys. 60, 3373 (1974).

    Article  Google Scholar 

  42. J. Y. Lee and H. C. Box: J. Chem. Phys. 59, 2509 (1972).

    Article  Google Scholar 

  43. W. W. H. Kou and H. C. Box: J. Chem. Phys. 64, 3060 (1976).

    Article  CAS  Google Scholar 

  44. a)H. C. Box. H. G. Freund, and E. E. Budzinski: J. Chem. Phys. 57, 4290 (1972); b)E. E. Budzinski. K. T. Lilga. and H. C. Box, J. Chem. Phys. 59, 2899 (1973).

    Article  CAS  Google Scholar 

  45. H. C. Box, E. E. Budzinski, and H. G. Freund: J. Chem. Phys. 61, 2222 (1974).

    Article  CAS  Google Scholar 

  46. C. L. Ko and H. C. Box: J. Chem. Phys. 68, 5357 (1978).

    Article  CAS  Google Scholar 

  47. O. Awadelkarim, A. Lund, and P.-O. Samskog: Radiat. Phys. Chem. 27, 353 (1986).

    CAS  Google Scholar 

  48. H. Shields and P. J. Hamrick. Jr.: J. Chem. Phys. 64, 263 (1976).

    Article  CAS  Google Scholar 

  49. a)H. C. Box and H. G. Freund: J. Chem. Phys. 44, 2345 (1966); b) E. Westhof, W. Flossmann, and A. Mueller: Mol. Phys. 28. 151(1974); c) G. Saxebl and E. Sagstuen: Int. J. Radiat. Biol, 26, 373 (1974).

    Article  CAS  Google Scholar 

  50. a) E. Westhof, W. Flossman, H.-D. Luedemann, and A. Mueller: J. Chem. Phys. 60, 3376 (1974)

    Article  Google Scholar 

  51. W. H. Nelson: J. Phys. Chem. 92, 554 (1988).

    Article  CAS  Google Scholar 

  52. D. M. Close, G. W. Fouse. W. A. Bernhard, and R. S. Andersen: J. Chem. Phys. 70, 2131 (1979).

    Article  CAS  Google Scholar 

  53. H. Muto, T. Inoue, and M. Iwasaki: J. Chem. Phys. 57, 3220 (1972).

    Article  CAS  Google Scholar 

  54. R. W. Holmbrg: J. Chem. Phys. 51, 3255 (1969).

    Article  Google Scholar 

  55. R. C. McCalley and A. L. Kwiram: J. Chem. Phys. 53, 2541 (1970).

    Article  CAS  Google Scholar 

  56. M. B. Yim and R. E. Klinck: J. Chem. Phys. 60, 538 (1974).

    Article  CAS  Google Scholar 

  57. a) M. V. V. S. Reddy, K. V. Lingam, and T. K. G. Rao: J. Chem. Phys. 76, 4398 (1982); b) T. K. G. Rao, and K. V. Lingam: Mol. Phys. 54. 999 (1985).

    Article  CAS  Google Scholar 

  58. a) P.-O. Samskog: Acta. Chem. Scand. A35, 559 (1981); b) P.-O. Samskog, A. Lund, G. Nilsson, and M. C. R. Symons: Chem. Phys. Lett. 66, 199 (1979).

    Article  CAS  Google Scholar 

  59. D. J. T. Hill, J. H. O’Donnell, P. J. Pomery, and A. K. Whittaker: Radiat. Phys. Chem. 26, 191 (1985).

    CAS  Google Scholar 

  60. K. Toriyama and W. C. Lin: J. Phys. Chem. 76, 3377 (1972).

    Article  CAS  Google Scholar 

  61. H. Muto and K. Nunome: “25th Symmposium of Radiation Chemistry, Japan”, Hiroshima University (1989).

    Google Scholar 

  62. T. Shiga and A. Lund: Ber. Buns. Geselish. 78, 259 (1974).

    CAS  Google Scholar 

  63. D. H. Levy and R. J. Myers: J. Chem. Phys. 44, 4177 (1966).

    Article  CAS  Google Scholar 

  64. M. A. Bonin, K. Tsuji. and F. Williams: Sature, 218, 946 (1968).

    CAS  Google Scholar 

  65. a)E. D. Sprague, K. Takeda, and F. Williams: Chem. Phys. Lett. 10, 299 (1971); b) T. Gillbro, K. Takeda. and F. Williams: J. Chem. Soc. Faraday Trans. 2, 70. 465 (1974); and references cited therein.

    Article  CAS  Google Scholar 

  66. E. D. Sprague, K. Takeda, J. T. Wang, and F. Williams: Can. J. Chem. 52, 2840 (1974).

    Article  CAS  Google Scholar 

  67. R. J. Egland and M. C. R. Symons: J. Chem. Soc. (A) 1326 (1970).

    Google Scholar 

  68. I. S. Ginns and M. C. R. Symons: J. C. S. Dalton, 185 (1972).

    Google Scholar 

  69. K. D. J. Root and M. C. R. Symons: J. Chem. Soc. (A) Inorg. Phys. Theor. 21 (1968).

    Google Scholar 

  70. M. Iwasaki. H. Muto, and K. Toriyama: J. Chem. Phys. 55, 1894 (1971).

    Article  CAS  Google Scholar 

  71. M. Fukaya. H. Muto, K. Toriyama, and M. Iwasaki: J. Phys. Chem. 80, 728 (1976).

    Article  CAS  Google Scholar 

  72. H. Muto, K. Toriyama, and M. Iwasaki: J. Chem. Phys. 57, 3016 (1972).

    Article  CAS  Google Scholar 

  73. M. Iwasaki, K. Minakata, and K. Toriyama: J. Chem. Phys. 55, 1472 (1971).

    Article  CAS  Google Scholar 

  74. B. Eda and M. Iwasaki: Mol. Phys. 24, 589 (1972).

    Article  CAS  Google Scholar 

  75. M. Iwasaki, F. Fukaya, S. Fujii, and H. Muto: J. Phys. Chem. 77, 2739 (1973).

    Article  CAS  Google Scholar 

  76. I. Miyagawa, K. Itoh: Bull. Am. Phys. Soc. 9, 488 (1964); Nature. 209. 504 (1966).

    Google Scholar 

  77. P. Pooleyand D. H. Wiffen: J. Am. Chem. Soc. 84 366 (1962).

    Google Scholar 

  78. E. E. Budzinski and H. C. Box: J. Chem. Phys. 63, 4927 (1975).

    Article  CAS  Google Scholar 

  79. I. Miyagawa and J. W. Fikes: Bull. Am. Phys. Soc. 15, 166 (1970).

    Google Scholar 

  80. K. Toriyama, H. Muto, and M. Iwasaki: J. Chem. Phys. 55, 1885 (1971).

    Article  CAS  Google Scholar 

  81. K. Akasaka, S. Ohnishi, T. Suita, and I. Nitta: J. Chem. Phys. 40, 3110 (1964).

    Article  CAS  Google Scholar 

  82. A. Naito, K. Akasaka, and H. Hatano: J. Magn. Reson. 24, 53 (1976); Chem. Phys. Letters, 32, 247 (1975).

    CAS  Google Scholar 

  83. K. Akasaka, S. Kominami, and H. Hatano: J. Phys. Chem. 75, 3746 (1971).

    Article  CAS  Google Scholar 

  84. a) R. Franzi, M. Geoffroy. M. V. V. S. Reddy, and J. Weber: J. Phys. Chem. 91, 3187 (1987); b) L. Bonazzola, J. P. Michaut, and J. Roncin: J. Chem. Phys. 83, 2727 (1985); c) D. N. R. Rao, M. C. R. Symons, and J. M. Stephenson: J. Chem. Soc. Perkin Trans. 2, 727 (1983).

    Article  CAS  Google Scholar 

  85. M. J. Colaneri and H. C. Box: J. Chem. Phys. 84, 2926 (1986).

    Article  CAS  Google Scholar 

  86. G. W. Neilson and M. C. R. Symons, J. C. S. Faraday Trans. 2, 68, 1582 (1972).

    Article  CAS  Google Scholar 

  87. G. W. Neilson and M. C. R. Symons: Mol. Phys. 27, 1613 (1974).

    Article  CAS  Google Scholar 

  88. D. Pace, K. Ezell, and L. D. Kispert: J. Chem Phys. 71 3971 (1979).

    Article  CAS  Google Scholar 

  89. H. Muto and L. D. Kispert: J. Chem. Phys. 72, 2300 (1980).

    Article  CAS  Google Scholar 

  90. D. J. Neilson and M. C. R. Symons: Chem. Phys. Letters, 47, 436 (1977).

    Article  Google Scholar 

  91. S. P. Mishra, G.W. Neilson, and M.C.R. Symons: J.Chem.Soc. Faraday Trans. 2, 70, 1280 (1974).

    Article  CAS  Google Scholar 

  92. N. Nagai and T. Gillbro: J. Phys. Chem. 81, 1793 (1977).

    Article  CAS  Google Scholar 

  93. M. C. R. Symons: Radiat. Radiat. Phys. Chem. (1980).

    Google Scholar 

  94. J. T. Wang and F. Williams: J. Am. Chem. Soc. 102 2860 (1980).

    Article  CAS  Google Scholar 

  95. R. F. Picone and M. T. Rogers: J. Magn. Reson. 14, 279 (1974).

    CAS  Google Scholar 

  96. P.-0. Samskog, L. D. Kispert, and B. Kayanaraman: J. Chem. Soc. Faraday Trans. 2, 80, 267 (1984).

    Article  CAS  Google Scholar 

  97. G. W. Neilson and M. C. R. Symons: J. C. S. Chem. Commun. 717 (1973).

    Google Scholar 

  98. A. Lund. P.-O. Samskog, and G. Nilsson: Chem. Phys. 57, 399 (1981).

    Article  CAS  Google Scholar 

  99. R. F. Picone and M. T. Rogers: J. Chem. Phys. 61, 4814 (1974).

    Article  CAS  Google Scholar 

  100. R. J. Booth, S. P. Nishra, G.W. Neilson. and M.C.R. Symons: Tetrahedron Lett. 34, 2949 (1975).

    Article  Google Scholar 

  101. L. D. Kispert, R. Reeves, and T. C. S. Chen: J. Chem. Soc. Faraday Trans. 2, 74, 871 (1978); P.-0. Samskog, and L. D. Kispert: J. Phys. Chem. 88, 1385 (1984).

    Article  CAS  Google Scholar 

  102. P.-0. Samskog and L. D. Kispert: J. Chem. Phys. 78, 2129 (1983).

    Article  CAS  Google Scholar 

  103. D. Shoemaker: Phys. Rev. 149, 693 (1966).

    Article  Google Scholar 

  104. The alkyne radical anion has been recently observed by ESR. It has a non-linear molecular structure. H. Muto, K. Matsuura, and K. Nunome:to be submitted for publication.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Muto, H. (1991). Trapped Anions in Organic Crystals. In: Lund, A., Shiotani, M. (eds) Radical Ionic Systems. Topics in Molecular Organization and Engineering, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3750-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3750-8_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5668-7

  • Online ISBN: 978-94-011-3750-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics