Skip to main content

Experimental and Computational Aspects of the Time–Correlated Single Photon Counting Technique

  • Chapter
The Structure, Dynamics and Equilibrium Properties of Colloidal Systems

Part of the book series: NATO ASI Series ((ASIC,volume 324))

Abstract

Two important aspects of the time-correlated single photon counting technique are presented. The first, concerning the extraction of the true decay curve from the experimental data, deals with the “reference convolution method”. The second is related to the treatment of decay data by means of the “simultaneous analysis” of fluorescence decay curves. It allows for the best parameter recovery and very accurate model testing. Applications involving aqueous micellar systems, using simulated data, are briefly reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Luo H.L., Boens N., Van der Aweraer M., DeSchryver F.C and Malliaris A. (1989), ‘Simultaneous analysis of time-resolved fluorescence quenching data in aqueous micellar systems in the presence and absence of added alcohol’, J.Phys.Chem, 93, 3244.

    Article  CAS  Google Scholar 

  2. Thomas J.K. (1987), ‘Characterization of surfaces by excited states’, J.Phys.Chem., 91. 267–276.

    Article  CAS  Google Scholar 

  3. Malliaris A. (1989), ‘Fluorescence probing in aqueous micellar systems: an overview’, Intern.Rev.Phys.Chem., 7, 95–121.

    Article  Google Scholar 

  4. Koester V.J. (1978), ‘Subnanosecond single photon counting fluorescence spectroscopy’, Rev.Sci.Instrum., 49, 1186–1191.

    Article  CAS  Google Scholar 

  5. Yamazaki I.N., Tamai K., Kume H., Tsuchiya H. and Oba K. (1985), ‘Michrochannel–plate photomultiplier applicability to the time-correlated photonon-counting method’, Rev.Sci.Instrum., 56, 1187–1194.

    Article  CAS  Google Scholar 

  6. Van den Zegel M., Boens N., Daems D. and DeSchryver F.C. (1986) ‘Possibilities and limitations of the time-correlated single photon counting technique: A comparative study of correction methods for the wavelength dependence of the instrument response function’, Chem.Phys., 101, 311–335.

    Article  Google Scholar 

  7. Zuker M., Szabo A.G., Bramall L., Krajcaski D.T. and Selinger B. (1985), ‘Delta function convolution method (DFCM) for fluorescence decay experiments’, Rev.Sci.Instrum. 56, 14–22.

    Article  CAS  Google Scholar 

  8. Boens N., Ameloot M, Yamazaki I. and DeSchryver F.C. (1988) ‘On the use and the performance of the delta function convolution method for the estimation of fluorescence decay parameters’, Chem.Phys., 121. 73–86.

    Article  CAS  Google Scholar 

  9. James D.R., Demmer D.R.M., Verrall R.E. and Steer R.P. (1983), ‘Excitation pulse-shape mimic technique for improving picoseconds-laser-excited time-correlated single-photon counting deconvolutions’, Rev.Sci.Instrum.,54, 1121–1130.

    Article  CAS  Google Scholar 

  10. Boens N., Van den Zegel M. DeSchryver F.C. and Desie G. (1986) The time-correlated single photon counting technique as a tool in pho tobiology’, Photobiochem. Photobiophys. Suppl., 93–108.

    Google Scholar 

  11. Arcioni A. and Zannoni C. (1984), ‘Intensity deconvolution in fluorescence depolarization studies of liquids, liquid crystals and membranes’, 113–128.

    Google Scholar 

  12. Boens N., Malliaris A., Van der Auweraer M., Luo H. and DeSchryver F.C. (1988), ‘Simultaneous analysis of single-photon timing data with a reference method: Application to a Poisson distribution of decay rates’, Chem.Phys. 121 199–209.

    Article  CAS  Google Scholar 

  13. Ameloot M., Beecham J.M. and Brand L. (1986), ‘Simultaneous analysis of multiple fluorescence decay curves by Laplace transforms, Deconvolution with reference or excitation profiles’, Biophys.Chem., 23, 155–171.

    Article  CAS  Google Scholar 

  14. Knutson J.R., Beechem J.M. and Brand L. (1983), ‘Simultaneous analysis of multiple fluorescence decay curves: A global approach’ Chem. Phys.Lett. 102. 501–507.

    Article  CAS  Google Scholar 

  15. Boens N., Luo H., Van der Auweraer M., Reekmans S., DeSchryver F.C. and Malliaris A. (1988), ‘Simultaneous analysis of fluorescence decay curves for the one-step determination of the mean aggregation number of aqueous micelles’, Chem.Phys.Lett. 146. 337–341.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Malliaris, A. (1990). Experimental and Computational Aspects of the Time–Correlated Single Photon Counting Technique. In: Bloor, D.M., Wyn-Jones, E. (eds) The Structure, Dynamics and Equilibrium Properties of Colloidal Systems. NATO ASI Series, vol 324. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3746-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3746-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5666-3

  • Online ISBN: 978-94-011-3746-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics