Skip to main content

Abstract

Homopyrimidine oligodeoxynucleotides have been covalently linked to intercalating agents. These bifunctional nucleic acid ligands bind to the major groove of DNA at homopurine-homopyrimidine sequences when they form triple helices. Spectroscopic studies and molecular modelling shows that the intercalating agent inserts its aromatic ring at the triplex-duplex junction. A strong stabilization of triple helical structures is observed. Energy transfer can occur between two derivatized oligonucleotides bound to neighboring sequences on both single-stranded and double-stranded DNA. Bifunctional oligonucleotide-intercalator conjugates provide new tools for a selective control of gene expression and for the detection of close proximity between two sequences on nucleic acids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hélène, C. and Lancelot, G. (1982) ‘Interactions between functional groups in protein-nucleic acid associations’, Prog. Biophys. Molec. Biol., 39, 1–68.

    Article  Google Scholar 

  2. Green, P.J., Pines, O. and Inouye, M. (1986) ‘The role of antisense RNA in gene regulation’, Ann. Rev. Biochem., 55, 569–597.

    Article  PubMed  CAS  Google Scholar 

  3. Cohen, J.S. Ed. (1989) ‘Oligodeoxynucleotides. Antisense inhibitors of gene expression’ in Topics in Molecular and Structural Biology, volume 12, MacMillan Press.

    Google Scholar 

  4. Hélène, C. and Toulmé, J.J. (1989) ‘Control of gene expression by antisense,sense and anti-gene nucleic acids’ Biochim.Biophys.Acta(in press).

    Google Scholar 

  5. Cooney, M., Czernuszewicz, G., Postel, E.H., Flint, S.J. and Hogan, M.E. (1988) ‘Site specific oligonucleotide binding represses transcription of human c-myc gene in vitro’, Science, 241, 456–459.

    Article  PubMed  CAS  Google Scholar 

  6. Hélène, C. and Toulmé, J.J. (1989) ‘Control of gene expression by oligodeoxynucleotides covalently linked to intercalating agents and nucleic acid-cleaving reagents’ In “Oligodeoxynucleotides. Antisense inhibitors of gene expression” in Topics in Molecular and Structural Biology, volume 12, Cohen, J.S. Ed., MacMillan Press.

    Google Scholar 

  7. Asseline, U., Thuong, N.T. and Hélène, C. (1983) ‘Nouvelles substances à forte affinité spécifique pour des séquences d’acides nucléiques: oligodésoxynucléotides liés de façon covalente à un agent intercalant’, C. R. Acad. Sc. Paris, 297 (série III), 369–372.

    CAS  Google Scholar 

  8. Asseline, U., Delarue, M., Lancelot, G., Toulmé, F., Thuong, N.T., Montenay-Garestier, T. and Hélène, C. (1984) ‘Nucleic acid-binding molecules with high affinity and base sequence specificity: intercalating agents covalently linked to oligodeoxynucleotides’, Proc. Natl. Acad. Sci. USA, 81, 3297–3301.

    Article  PubMed  CAS  Google Scholar 

  9. Asseline, U., Toulmé, F., Thuong, N.T., Delarue, M., Montenay-Garestier, T. and Hélène, C. (1984) ‘Oligodeoxynucleotides covalently linked to intercalating dyes as base sequence-specific ligands. Influence of dye attachment site’, EMBO J., 3, 795–800.

    PubMed  CAS  Google Scholar 

  10. Thuong, N.T., Asseline, U. and Montenay-Garestier, T (1989) ‘Oligodeoxynucleotides covalently linked to intercalating and reactive substances: synthesis, characterization and physicochemical studies’ In “Oligodeoxynucleotides. Antisense inhibitors of gene expression” in Topics in Molecular and Structural Biology, volume 12, Cohen, J.S. Ed., MacMillan Press.

    Google Scholar 

  11. Sun, J.S., François, J.C., Montenay-Garestier, T., Saison-Behmoaras, T., Roig, V., Chassignol, M., Thuong, N.T. and Hélène, C. (1989) ‘Sequence-specific intercalating agents. Intercalation at specific sequences on duplex DNA via major-groove recognition by oligonucleotide intercalator conjugates’, Proc. Natl. Acad. Sci. USA, 86, 9198–9202.

    Article  PubMed  CAS  Google Scholar 

  12. Arnott, S., Bond, P. J., Selsing, E. and Smith, P. J. C. (1976) ‘Models of triple stranded polynucleotides with optimised stereochemistry’, Nucleic Acids Res., 3, 2459–2470.

    Article  PubMed  CAS  Google Scholar 

  13. Arnott, S., Chandrasekaran, R., Birdsall, D. L., Leslie, A. G. W. and Ratliff, R. L. (1980) Nature, 283, 743–746.

    Article  PubMed  CAS  Google Scholar 

  14. Lavery, R., Sklenar, H., Zakrzewska, K. and Pullman, B. (1986) ‘The flexibility of the nucleic acids: (II) The calculation of internal energy and applications to mononucleotide repeat DNA’, J. Biomol. Struct. and Dyn., 3, 989–1014.

    Article  CAS  Google Scholar 

  15. Lavery, R. and Sklenar, H. (1989) ‘Defining the structure of irregular nucleic acids: conventions and principles’, J. Biomol. Struct. and Dyn., 6, 655–667.

    Article  CAS  Google Scholar 

  16. Cieplak, P., Rao, S. N., Hélène, C., Montenay-Garestier, T. and Kollman, P. (1987) ‘Conformations of duplex structures formed by oligodeoxynucleotides covalently linked to the intercalator 2-methoxy6-chloro-9-aminoacridine’, J. Biomol. Struct. and Dyn., 5, 361–382.

    Article  CAS  Google Scholar 

  17. Weiner, S. J., Kollman, P. A., Nguyen, D. T. and Case, D. A. (1986) ‘An all atom force field for simulations of proteins and nucleic acids’, J. Comput. Chem., 7, 230–252.

    Article  CAS  Google Scholar 

  18. Morrisson, L.E. (1988) in Gene Probe Technology II San Diego.

    Google Scholar 

  19. Morrisson, L.E., Halder, T.C. and Stols, L.M. (1989) ‘Solution-phase DNA assay using fluorescent probes’, Anal. Biochem, 183, 231–244.

    Article  Google Scholar 

  20. Cardullo, R.A., Agrawal, S., Flores, C., Zamecnik, P.C. and Wolf, D.E. (1988) ‘Detection of nucleic acid hybridization by nonradiative fluorescence resonance energy transfer’, Proc. Natl. Acad. Sci. USA, 85, 8790–8794.

    Article  PubMed  CAS  Google Scholar 

  21. Le Bris, M.T., Mugnier, J., Bourson, J. and Valeur, B. (1984) ‘Spectral properties of a new fluorescent dye emitting in the red: a benzoxazinone derivative’, Chem. Phys. Letters, 106, 124–127.

    Article  Google Scholar 

  22. Dupuy, F., Rullière, C., Le Bris, M.T. and Valeur, B. (1984) ‘A new class of laser dyes: benzoxazinone derivatives’, Optics communications, 51, 36–40.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1990 Springer Science+Business Media Dordrecht

About this paper

Cite this paper

Montenay-Garestier, T. et al. (1990). Design of Bifunctional Nucleic Acid Ligands. In: Pullman, B., Jortner, J. (eds) Molecular Basis of Specificity in Nucleic Acid-Drug Interactions. The Jerusalem Symposia on Quantum Chemistry and Biochemistry, vol 23. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3728-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3728-7_19

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5657-1

  • Online ISBN: 978-94-011-3728-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics