Skip to main content

Quantitative and qualitative coronary arteriography

  • Chapter
Quantitative Coronary Arteriography

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 117))

Summary

The clinical objectives of arteriography are to obtain information that contributes to an understanding of the mechanisms of the clinical syndrome, provides prognostic information, facilitates therapeutic decisions, and guides invasive therapy. Quantitative and improved qualitative assessments of arterial disease provide us with a common descriptive language which has the potential to accomplish these objectives more effectively and thus to improve clinical outcome. In certain situations, this potential has been demonstrated. Clinical investigation using quantitative techniques has definitely contributed to our understanding of disease mechanisms and of atherosclerosis progression/regression. Routine quantitation of clinical images should permit more accurate and repeatable estimates of disease severity and promises to provide useful estimates of coronary flow reserve. But routine clinical QCA awaits more cost- and time-efficient methods and clear proof of a clinical advantage.

Careful inspection of highly magnified, high-resolution arteriographic images reveals morphologic features related to the pathophysiology of the clinical syndrome and to the likelihood of future progression or regression of obstruction. Features that have been found useful include thrombus in its various forms, ulceration and irregularity, eccentricity, flexing and dissection. The description of such high-resolution features should be included among, rather than excluded from, the goals of image processing, since they contribute substantially to the understanding and treatment of the clinical syndrome.

Supported in part by USPHS grants PO1 HL-30086, RO1 HL-19451, HL-18645, and HL-03174, in part by an Established Investigator Award from the American Heart Association (79–116), and in part by a grant from the John L. Locke, Jr. Charitable Trust, Seattle, Washington.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Gensini GG, Kelly AE, Da Costa BCB, Huntington PP: Quantitative angiography: The measurement of coronary vasomobility in the intact animal and man. Chest 60: 522–530, 1971.

    Article  PubMed  CAS  Google Scholar 

  2. Detre KM, Wright E, Murphy ML, Takaro T: Observer agreement in evaluating coronary angiograms. Circulation 52: 979–986, 1975.

    Article  PubMed  CAS  Google Scholar 

  3. DeRouen TA, Murray JA, Owen W: Variability in the analysis of coronary arteriograms. Circulation 55: 324–328, 1977.

    Article  PubMed  CAS  Google Scholar 

  4. White CW, Wright CB, Doty DB, Hiratzka LF, Eastham CL, Harrison DG, Marcus ML: Does visual interpretation of the coronary arteriogram predict the physiologic importance of a coronary stenosis? N Engl J Med 310: 819–824, 1984.

    Article  PubMed  CAS  Google Scholar 

  5. Kirkeeide RL, Fung P, Smalling RW, Gould KL: Automated evaluation of vessel diameter from arteriograms. Comput Cardiol 1982: 215—218.

    Google Scholar 

  6. Tobis J, Nalcioglu O, Iseri L, Johnston WD, Roeck W, Castleman E, Bauer B, Montelli S, Henry WL: Detection and quantitation of coronary artery stenoses from digital subtraction angiograms compared with 35-millimeter film cineangiograms. Am J Cardiol 54: 489–496, 1984.

    Article  PubMed  CAS  Google Scholar 

  7. Spears JR, Sandor T, Als AV, Malagold M, Markis JE, Grossman W, Serur JR, Paulin S: Computerized image analysis for quantitative measurement of vessel diameter from cineangiograms. Circulation 68: 453–461, 1983.

    Article  PubMed  CAS  Google Scholar 

  8. Reiber JHC, Serruys PW, Slager CJ: Quantitative coronary and left ventricular cineangiography: Methodology and clinical applications. Martinus Nijhoff Publishers, Dordrecht, 1986.

    Book  Google Scholar 

  9. Mancini GBJ, Simon SB, McGillem MJ, Le Free MT, Friedman HZ, Vogel RA: Automated quantitative coronary arteriography: Morphologic and physiologic validation in vivo of a rapid digital angiographic method. Circulation 75: 452–460, 1987.

    Article  PubMed  CAS  Google Scholar 

  10. Parker DL, Pope DL, van Bree R, Marshall HW: Three-dimensional reconstruction of moving arterial beds from digital subtraction angiography. Comput Biomed Res 20: 166–185, 1987.

    Article  PubMed  CAS  Google Scholar 

  11. Alderman EL, Berte LE, Harrison DC, Sanders W: Quantitation of coronary artery dimensions using digital image processing. Diagn. Radiol 314: 273–277, 1981.

    Google Scholar 

  12. Scoblionko DP, Brown BG, Mitten S, Calduell JH, Kennedy JW, Bolson EL, Dodge HT: A new digital electronic caliper for measurement of coronary arterial stenosis: Comparison with visual estimates and computer-assisted measurements. Am J Cardiol 53: 689–693, 1984.

    Article  PubMed  CAS  Google Scholar 

  13. Brown BG, Bolson EL, Frimer M, Dodge HT: Quantitative coronary arteriography: Estimation of dimensions, hemodynamic resistance, and atheroma mass of coronary artery lesions using the arteriogram and digital computation. Circulation 55: 329–337, 1977.

    Article  PubMed  CAS  Google Scholar 

  14. Blankenhorn DH, Brooks SH, Selzer RH, Crawford DW, Chin HP: Assessment of atherosclerosis from angiographic images. Proc Soc Exp Biol Med 145: 1298–1300, 1974.

    PubMed  CAS  Google Scholar 

  15. Crawford DW, Brooks SH, Selzer RH, Brandt Jr. R, Beckenbach ES, Blankenhorn DH: Computer densitometry for angiographic assessment of arterial cholesterol content and gross pathology in human atherosoclerosis. J Lab Clin Med 89: 378–392, 1977.

    PubMed  CAS  Google Scholar 

  16. McMahon MM, Brown BG, Cukingnan R, Rolett EL, Bolson E, Frimer M, Dodge HT: Quantitative coronary angiography: Measurement of the “critical” stenosis in patients with unstable angina and single-vessel disease without collaterals. Circulation 60: 106–113, 1979.

    Article  PubMed  CAS  Google Scholar 

  17. Rafflenbeul W, Urthaler F, Lichtlen P, James T: Quantitative difference in “critical” stenosis between right and left coronary artery in man. Circulation 62: 1188–1196, 1980.

    Article  PubMed  CAS  Google Scholar 

  18. Dodge HT, Sheehan FH, Kliman SH: Quantitative relationship of coronary stenosis and ventricular hypokinesia. Comput Cardiol 1981: 170–175.

    Google Scholar 

  19. Gould KL, Kelley KO, Bolson EL: Experimental validation of quantitative coronary arteriography for determining pressure-flow characteristics of coronary stenosis. Circulation 66: 930–937, 1982.

    Article  PubMed  CAS  Google Scholar 

  20. Brown BG, Lee AB, Bolson EL, Dodge HT: Reflex constriction of significant coronary stenosis as a mechanism contributing to ischemic left ventricular dysfunction during isometric exercise. Circulation 70: 18–24, 1984.

    Article  PubMed  CAS  Google Scholar 

  21. Harrison DG, White CW, Hiratzka LF, Doty DB, Barnes DH, Eastham CL, Marcus ML: The value of lesion cross-sectional area determined by quantitative coronary arteriography in assessing the physiologic significance of proximal left anterior descending coronary arterial stenoses. Circulation 69: 1111–1119, 1984.

    Article  PubMed  CAS  Google Scholar 

  22. Rafflenbuel W, Smith LR, Rogers WJ, Mantle JA, Rackley CE, Russell RO. Quantitative coronary arteriography: Coronary anatomy of patients with unstable angina pectoris reexamined 1 year after optimal medical therapy. Am J Cardiol 43: 699–707, 1979.

    Article  Google Scholar 

  23. Wilson RF, Holida MD, White CW: Quantitative angiographic morphology of coronary stenosis leading to myocardial infarction or unstable angina. Circulation 73: 286–296, 1986.

    Article  PubMed  CAS  Google Scholar 

  24. Goldstein RA, Kirkeeide R, Demer L, Merhige M, Nishikawa A, Smalling RW, Mullani NA, Gould KL: Relations between geometric dimensions of coronary artery stenoses and myocardial perfusion reserve in man. J Clin Invest 1473–1478, 1987.

    Google Scholar 

  25. Gage JE, Hess DM, Murakami T, Ritter M, Grimm J, Krayenbuehl HP: Vasoconstriction of stenotic coronary arteries during dynamic exercise in patients with classic angina pectoris. Reversibility by nitroglycerin. Circulation 73: 865–876, 1986.

    Article  PubMed  CAS  Google Scholar 

  26. Wilson RF, Marcus ML, White CW: Prediction of the physiological significance of coronary arterial lesions by quantitative lesion geometry in patients with limited coronary artery disease. Circulation 75: 723–732, 1987.

    Article  PubMed  CAS  Google Scholar 

  27. Ludmer PL, Selwyn AP, Shook TL, Wayne RR, Mudge GH, Alexander RW, Ganz P: Paradoxical vasoconstriction induced by acetylcholine in atherosclerotic coronary arteries. N Engl J Med 315: 1046–1051, 1986.

    Article  PubMed  CAS  Google Scholar 

  28. Zijlstra F, van Ommeren J, Reiber JHC, Serruys PW: Does quantitative assessment of coronary artery dimensions predict the physiological significance of a coronary stenosis? Circulation 75: 1154–1160, 1987.

    Article  PubMed  CAS  Google Scholar 

  29. Josephson MA, Brown BG, Hecht HS, Hopkins J, Pierce CD, Petersen RB: Noninvasive detection and localization of coronary stenoses in patients: Comparison of resting dipyridamole and exercise thallium-201 myocardial perfusion imaging. Am Heart J 103: 1008–1018, 1982.

    Article  PubMed  CAS  Google Scholar 

  30. Vogel R, LeFree M, Bates E, O’Neill W, Foster R, Kirlin P, Smith D, Pitt B: Application of digital techniques to selective coronary arteriography: Use of myocardial contrast appearance time to measure coronary flow reserve. Am Heart J 107: 153–164, 1984.

    Article  PubMed  CAS  Google Scholar 

  31. Wijns W, Serruys PW, Reiber HJC, van den Brand M, Simoons ML, Kooijman CJ, Balakumaran K, Hugenholtz PG: Quantitative angiography of the left anterior descending coronary artery: Correlations with pressure gradient and results of exercise thallium scintigraphy. Circulation 71: 273–279, 1985.

    Article  PubMed  CAS  Google Scholar 

  32. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL, Mullani NA, Smalling RW, Nishikawa A, Merkige ME: Assessment of coronary artery disease severity by positron emission tomography: Comparison with quantitative arteriography in 193 patients. Circulation 79: 825–835,1989.

    Article  PubMed  CAS  Google Scholar 

  33. Demer L, Gould KL, Kirkeeide R: Assessing stenosis severity: Coronary flow reserve, collateral function, quantitative coronary arteriography, position imaging, and digital subtraction angiography. A review and analysis. Prog in Cardiovaosc Dis 33: 307–322, 1988.

    Article  Google Scholar 

  34. Feldman RL, Repine CJ, Curry RC, Conti CR: Coronary arterial responses to graded doses of nitroglycerin. Am J Cardiol 43: 91–97, 1979.

    Article  PubMed  CAS  Google Scholar 

  35. Rafflenbuel W, Urthaler F, Russell RO, Lichtlen P, James TM: Dilatation of coronary artery stenoses after isosorbide dinitrate in man. Br Heart J 43: 546–549, 1980.

    Article  Google Scholar 

  36. Brown BG, Bolson EL, Petersen RB, Pierce CD, Dodoge HT: The mechanisms of nitroglycerin action: Stenosis vasodilatation as a major component of the drug response. Circulation 64: 1089–1097, 1981.

    Article  PubMed  CAS  Google Scholar 

  37. Brown BG, Josephson MA, Petersen RB, Pierce CD, Wong M, Hecht HS, Bolson E, Dodge HT: Intravenous dipyridamole combined with isometric handgrip for near maximal acute increase in coronary flow in patients with coronary disease. Am J. Cardiol 48: 1077–1085, 1981.

    Article  PubMed  CAS  Google Scholar 

  38. Mudge GH Jr, Goldberg S, Gunther S, Mann T, Grossman W: Comparison of metabolic and vasoconstrictor stimuli on coronary vascular resistance in man. Circulation 59: 544–550, 1979.

    Article  PubMed  Google Scholar 

  39. Feldman RL, Hill JA, Conti JB, Conti CR, Pepine CJ: Analysis of coronary responses to nifedipine alone and in combination with intracoronary nitroglycerin in patients with coronary artery disease. Am Heart J 105: 651–658, 1983.

    Article  PubMed  CAS  Google Scholar 

  40. Hossack KF, Brown BG, Stewart DK, Dodge HT: Diltiazem-induced blockade of sympathetically mediated constriction of normal and diseased coronary arteries: lack of epicardial coronary dilatory effect in humans. Circulation 70: 465–471, 1984.

    Article  PubMed  CAS  Google Scholar 

  41. Brown BG, Bolson EL, Dodge HT: Dynamic mechanisms in human coronary stenosis. Circulation 70: 917–922, 1984.

    Article  PubMed  CAS  Google Scholar 

  42. Barndt Jr R, Blankenhorn DH, Crawford DW, Brooks SH: Regression and progression of early femoral atherosclerosis in treated hyperlipoproteinemic patients. Ann Intern Med 86: 139–146, 1977.

    PubMed  Google Scholar 

  43. Blankenhorn DH, Brooks SH, Selzer RH, Barndt Jr R: The rate of atherosclerosis change during treatment of hyperlipoproteinemia. Circulation 57: 355–361, 1978.

    Article  PubMed  CAS  Google Scholar 

  44. Reiber JHC, Serruys PW, Kooijman CJ, Wijns W, Slager CJ, Gerbrands JJ, Schumbiers JCH, Boer A den, Hugenholtz PG: Assessment of short-, medium-, and long-term variations in arterial dimensions from computer-assisted quantitation of coronary cineangiograms. Circulation 71: 280–288, 1985.

    Article  PubMed  CAS  Google Scholar 

  45. Brown BG, Adams WA, Albers JJ, Lin J-T, Bolson EL, Dodge HT: Quantative arteriography in coronary intervention trials: Rationale, study design, and lipid response in the University of Washington Familial Atherosclerosis Treatment Study (FATS). In Evolution of the human atherosclerotic plaque. S Glagov, D Blankenhorn, R Wissler, W Newman (Eds.), Springer-Verlag, 1988: 000–000.

    Google Scholar 

  46. Arntzenius AC, Kromhout D, Barth JD, Reiber JHC, Bruschke AVG, Buis B, Gent CM van, Kempen-Voogd N, Strikwrede N, Velde EA van der: Diet, lipoproteins, and the progression of coronary atherosclerosis: The Leiden Interventional Trial. N Engl J Med 312: 805–811, 1985.

    Article  PubMed  CAS  Google Scholar 

  47. Blankenhorn DM, Nessim SA, Johnson RL, Sanmarco ME, Azen SP, Cashin-Hemphill L: Beneficial effects of combined colestipol-niacin therapy on coronary atherosclerosis and coronary venous bypass grafts. JAMA 257: 3233–3240, 1987.

    Article  PubMed  CAS  Google Scholar 

  48. Brown BG, Lin JT, Kelsey S, Passamani ER, Levy RI, Dodge HT, Detre KM: Progression of coronary atherosclerosis in patients with probable familial hypercholesterolemia. Arteriosclerosis 9 (suppl I): I-81 – I-90, 1989.

    Google Scholar 

  49. Feldman RL, Crick WF, Conti CR, Pepine CJ: Quantitative coronary angiography during intracoronary streptokinase in acute myocardial infarction: How long to continue thrombolytic therapy? Cathet Cardiovaosc Diagn 9: 9, 1983.

    Article  CAS  Google Scholar 

  50. Serruys PW, Wijns W, Barnd M van den, Ribeiro V, Fioretti P, Simoons ML, Kooijman CJ, Reiber JHC, Hugenholtz PG: Is transluminal coronary angioplasty mandatory after successful thrombolysis? A quantitative coronary angiographic study. Br Heart J 50: 257–265, 1983.

    Article  PubMed  CAS  Google Scholar 

  51. Harrison DG, Ferguson DW, Collins SM, Skorton DJ, Ericksen EE, Kioschos JM, Marcus ML, White CW: Rethrombosis after reperfusion with streptokinase: Importance of geometry of residual lesions. Circulation 69: 991–999, 1984.

    Article  PubMed  CAS  Google Scholar 

  52. Sheehan FH, Mathey DG, Schofer J, Dodge HT, Bolson EL: Factors that determine recovery of left ventricular function after thrombolysis in patients with acute myocardial infarction. Circulation 71: 1121–1128, 1985.

    Article  PubMed  CAS  Google Scholar 

  53. Cribier A, Saoudi N, Berland J, Letec B: Regression of residual coronary stenosis after recanalization by fibrinolysis in myocardial infarction. Quantitative analysis of coronary angiography immediately after obstruction removal, at a 15-day and 3-month follow-up. Arch Mai Coeur 78: 353–360, 1985.

    CAS  Google Scholar 

  54. Brown BG, Gallery CA, Badger RS: Incomplete lysis of thrombus in the moderate underlying atherosclerotic lesion during intracoronary infusion of streptokinase for acute myocardial infarction: Quantitative angiographic observations. Circulation 73: 653–661, 1986.

    Article  PubMed  CAS  Google Scholar 

  55. Gold HK, Leinbach RC, Garabedian HD, Yasuda T, Johns JA, Grossbard EB, Palacios I, Collen D: Acute coronary reocclusion after thrombolysis with recombinant human tissue-type plasminogen activator: Prevention by a maintenance infusion. Circulation 73: 347–352, 1986.

    Article  PubMed  CAS  Google Scholar 

  56. Brown BG & Burroughs-Wellcome tPA Study Group: Low-dose infusion of tissue plasminogen activator (tPA) for 12–24 hours after the initial dose. Quantitative arteriography analysis. Circulation 76 (suppl IV): IV-305, 1987 (abstract).

    Google Scholar 

  57. Badger RS, Brown BG, Kennedy JW, Mathey D, Gallery C, Bolson EL, Dodge HT: Usefulness of recanalization to luminal diameter of 0.6 millimeter or more with intra-coronary streptokinase during acute myocardial infarction in predicting “normal” perfusion status, continued arterial patency, and survival at one year. Am J Cardiol 59: 519–522, 1987.

    Article  PubMed  CAS  Google Scholar 

  58. Brown BG, Serruys PW: Qualitative and quantitative coronary arteriographic changes after thrombolysis: Early and late results. In: Thrombolysis in Cardiovascular Diseases. DG Julian, W Kübler, RM Norris, HJ Swan, D Collen, M Verstraete (Eds.), Marcel Dekker Publishers. New York, 1989: 103–127.

    Google Scholar 

  59. Serruys PW, Reiber JHC, Wijns W, van den Brand M, Kooijman H, ten Katen HJ, Hugenholtz PG: Assessment of percutaneous transluminal coronary angioplasty by quantitative coronary angiography: Diameter versus densitometric area measurements. 54: 482–488, 1984.

    CAS  Google Scholar 

  60. Johnsen MR, Brayben GP, Ericksen EE, Collins SM, Skorton DJ, Harrison DG, Marcus ML, White CW: Changes in cross-sectional area of the coronary lumen in the six months after angioplasty: A quantitative analysis of the variable response to percutaneous transluminal angioplasty. Circulation 73: 467–475, 1986.

    Article  Google Scholar 

  61. Tobis J, Henry WL: Videodensitometric determination of minimum coronary luminal diameter before and after angioplasty. Am J Cardiol 59: 38–44.

    Google Scholar 

  62. Brown BG, Bolson EL, Dodge HT: Percutaneous transluminal coronary angioplasty and subsequent restenosis: Quantitative and qualitative methodology for their assessment. Am J Cardiol 60: 34B–38B, 1987.

    Article  PubMed  CAS  Google Scholar 

  63. Serruys PW, Luijten HE, Beatt KJ, Geuskens R, de Feyter PJ, van den Brand M, Rdiber JHC, ten Katen JH, van Es GA, Hugenholtz PG: Incidence of restenosis after successful coronary angioplasty: A time-related phenomenon. A quantitative angiographic study in 342 consecutive patients at 1, 2, 3, and 4 months. Circulation 77: 361–371, 1988.

    Article  PubMed  CAS  Google Scholar 

  64. Zijlstra F, den Boer A, Reiber JHC, van Es GA, Lubsen J, Serruys PW: Assessment of immediate and long-term functional results of percutaneous transluminal coronary angioplasty. Circulation 78: 15–24, 1988.

    Article  PubMed  CAS  Google Scholar 

  65. Fischell TA, Derby G, Tse TM, Stadius ML: Coronary artery vasoconstriction routinely occurs after percutaneous transluminal coronary angioplasty. A quantitative arteriographic analysis. Circulation 78: 1323–1334, 1988.

    Article  PubMed  CAS  Google Scholar 

  66. Sandor T, Als AV, Paulin S: Cine-densitometric measurement of coronary arterial stenoses. Cathet Cardiovasc Diag 5: 229–245, 1979.

    Article  CAS  Google Scholar 

  67. Nichols AB, Gabrieli CFO, Fenoglio Jr JJ, Esser PD: Quantification of relative coronary arterial stenosis by cinevideodensitometric analysis of coronary arteriograms. Circulation 69: 512–522, 1984.

    Article  PubMed  CAS  Google Scholar 

  68. Collins SM, Skorton DJ, Harrison DG, White CW, Eastham CL, Hiratzka LF, Doty DB, Marcus ML: Quantitative computer-based videodensitometry and the physiological significance of a coronary stenosis. comput Cardiol 219–222, 1982.

    Google Scholar 

  69. Brown BG, Bolson EL, Dodge HT: Quantitative computer techniques for analyzing coronary arteriograms. Prog Cardiovasc Dis 28: 403–418, 1986.

    Article  PubMed  CAS  Google Scholar 

  70. Dodge Jr JT, Brown BG, Bolson EL, Dodge HT: Intrathoracic spatial location of specified coronary segments on the normal human heart: Applications in quantitative arteriography, assessment of regional risk and contraction, and anatomic display. Circulation 78: 1167–1180, 1988.

    Article  PubMed  Google Scholar 

  71. Austen WG, Edwards JE, Frye RL, Gensini GG, Gott VL, Griffith LSC, McGoon DC, Murphy ML, Roe BB: A reporting system on patients evaluated for coronary artery disease. Report of the Ad Hoc Committee for Grading of Coronary Artery Disease. Council on Cardiovascular Surgery, American Heart Association. Circulation 51: 7–40, 1975.

    Article  Google Scholar 

  72. Principal Investigators of CASS and Associates: National Heart, Lung, and Blood Institute Coronary Artery Surgery Study. Circulation 63 (suppl I): I-1 – I-139, 1981.

    Google Scholar 

  73. Falk E: Unstable angina with fatal outcome: Dynamic coronary thrombus leading to infarction and/or sudden death. Circulation 71: 699–708, 1985.

    Article  PubMed  CAS  Google Scholar 

  74. Ambrose JA, Winters SL, Arora RR, Haft JI, Goldstein J, Rentrop KP, Gorlin R, Fuster V: Coronary angiographic morphology in myocardial infarction: A link between the pathogenesis of unstable angina and myocardial infarction. J. Am Coll Cardiol 6: 1223–1238, 1985.

    Article  Google Scholar 

  75. Nakagawa S, Hanada Y, Koiwaya Y, Tanaka K: Angiographic features in the infarct-related artery after intracoronary urokinase followed by prolonged anticoagulation. Circulation 78: 1335–1344, 1988.

    Article  PubMed  CAS  Google Scholar 

  76. Levin DC, Gardiner Jr GA: Complex and simple coronary artery stenoses: A new way to interpret coronary angiograms based on morphologic features of lesions. Radiology 164: 675–680, 1987.

    PubMed  CAS  Google Scholar 

  77. Mabin TA, Holmes Jr DR, Smith HC, Vlietstra RE, Bove AA, Reeder GS, Chesebro JH, Bresnahan JF, Orszulak TA: Intracoronary thrombus: Role in coronary occlusion complicating PTCA. J Am Coll Cardiol 5: 198–202, 1985.

    Article  PubMed  CAS  Google Scholar 

  78. Ellis SG, Roubin GS, King SB III, Douglas JS, Weintraub WS, Thomas RG, Cox WR: Angiographic and clinical predictors of acute closure after native-vessel coronary angioplasty. Circulation 77: 372–380, 1988.

    Article  PubMed  CAS  Google Scholar 

  79. Nash DT, Caldwell N, Ancona D: Accelerated coronary artery disease arteriographically proved. Analysis of risk factors. NY State J Med 74: 947–950, 1974.

    CAS  Google Scholar 

  80. Rösch J, Antonovic R, Trenouth RS, Rahimtoooola SH, Sim DN, Dotter CT: The natural history of coronary artery stenosis. Radiology 119: 513–520, 1976.

    PubMed  Google Scholar 

  81. Kramer JR, Matsuda Y, Mulligan JC, Aronow M, Proudfit WL: Progression of coronary atherosclerosis. Circulation 63: 519–526, 1981.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Brown, B.G., Simpson, P., Dodge, J.T., Bolson, E.L., Dodge, H.T. (1991). Quantitative and qualitative coronary arteriography. In: Reiber, J.H.C., Serruys, P.W. (eds) Quantitative Coronary Arteriography. Developments in Cardiovascular Medicine, vol 117. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3726-3_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3726-3_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5656-4

  • Online ISBN: 978-94-011-3726-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics