Skip to main content

Process Optimization of an Enzyme Membrane Reactor with Soluble Enzymes up to Industrial Scale

  • Chapter
Effective Industrial Membrane Processes: Benefits and Opportunities
  • 299 Accesses

Abstract

With the example of the enzymatically catalyzed hydrolysis of lactose the process optimization of steam-sterilizable dialysis membrane reactors is carried out up to industrial scale.

The expected conversion of lactose in the membrane reactor is dominated by the mass transfer resistance and the real flow in the reactor. Therefore a model for real reactors is developed to describe the transport reaction behaviour of the membrane reactors which considers the non-linear kinetics of the native enzyme, the real mixing conditions in the reactor and the mass transfer over the membrane. The calculation is carried out with the help of a coupled numerical solution.

By experimental investigations the enzyme kinetics, the mass transfer in the membrane, the hydrodynamics and the conversion are measured. The model permits the calculation of important process parameters.

For the hydrolysis of lactose by ß-galactosidase from Kluyveromyces marxianus the theoretical calculations with the developed model show good agreement with experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

A m2 :

membrane surface area

C mol·m-3 :

concentration

di m:

inside diameter of hollow fibre

D m2·s-1 :

diffusion coefficient

Dm m2·s-1 :

effective diffusion coefficient in the swollen membrane

Ea J·mol-1 :

activation energy

ko m·s-1 :

mass transfer coefficient

KM mol·m-3 :

Michaelis constant

KI mol·m-3 :

inhibition constant

L m:

length of hollow fibre

K,N,M:

number of tanks

n:

number of hollow fibres

r mol·s-1 :

reaction rate

t s:

time

̇ m3·s-1 :

volumetric flow rate

V m3 :

volume

Vmax mol·s-1·m-3 :

maximum reaction rate

X:

conversion

Yp/s :

molar yield of product on substrate

σ2 :

variance of residence time related to dimensionless time

θ:

dimensionless time

Re:

Reynolds number

References

  • Czermak, P., König, A., Tretzel, J., Reimerdes, E.H. and Bauer, W. (1988 a) ‘Enzymatically Catalyzed Processes in Dialysis Membrane Reactors’ Forum Mikrobiologie, vol. 11, no. 9, pp. 368–73

    CAS  Google Scholar 

  • Czermak, P., Eberhard, G., König, A., Tretzel, J., Reimerdes, E.H. and Bauer, W. (1988 b) ‘Dialvsis Membrane Reactors for Enzymatic Conversions in Biotechnical Processes: Functional Principles and Examples for Application’, DECHEMA Biotechnology Conferences, vol. 2, (Behrens, D., Ed.), VCH Verlagsgesellschaft, Weinheim, pp. 133–145

    Google Scholar 

  • Czermak, P. and Bauer, W. (1990 a) ‘Mass Transfer and Mathematical Modelling of Enzymatically Catalyzed Conversion in a Dialysis Membrane Reactor’, Engineering and Food, vol. 3, (Spiess, W.E.L., Schubert, H., Ed.), Elsevier Applied Science, London - New York, pp.468–477

    Google Scholar 

  • Czermak, P., Bahr, D. and Bauer, W. (1990 b) ‘Verfahrenstechnische Optimierung der kontinuierlichen enzymatischen Laktosehydrolyse im Dialyse-Membranreaktor’ Chem. Ing. Tech., vol. 62, no. 8, pp. 678–679 and MS 1885/90

    Article  CAS  Google Scholar 

  • Czermak, P. (1990) Entwicklung und verfahrenstechnische Optimierung eines Enzym-Membranreaktors für die Hydrolyse von Laktose, Fortschritt-Bericht VDI, Reihe 14, no. 64, VDI Verlag, Düsseldorf

    Google Scholar 

  • Kirstein, D., Beßerdich, H., Kahrig, E. (1980) ‘Hollow Fibre Enzyme Reactor Part II: Glucose Oxidase Reactor for the Production of Gluconic Acid from Glucose’, Chem. Techn., vol. 32, pp. 466–468

    CAS  Google Scholar 

  • Levenspiel, O. (1979) The Chemical Reactor Omnibook, OSU Book Stores Inc., Corvallis

    Google Scholar 

  • Patent (1988) DE-3831786.9, EP-360-133-A

    Google Scholar 

  • Prenosil, J.E., Dunn, I.J., Heinzle, E. (1987) ‘Biocatalyst Reaction Engineering’, Biotechnology, vol. 7a, (Rehm, H.J., Reed, G., Ed.), VCH Verlagsgesellschaft, Weinheim, pp. 489–545

    Google Scholar 

  • Prenosil, J.E.; Stuker, E.; Bourne, J.R. (1987) Formation of oligosaccharides during enzymatic lactose hydrolysis: part I: state of art’, Biotechnol. Bioeng., vol. 30, pp. 1019–1025

    Article  CAS  Google Scholar 

  • Prenosil, J.E.; Stuker, E.; Bourne, J.R. (1987) ‘part II: experimental’, Biotechnol. Bioeng., vol. 30, pp. 1026–1031

    Article  CAS  Google Scholar 

  • Pronk, W., Kerkhof, P.J.A.M., van Helden, C., van’t Riet, K. (1988) ‘The Hydrolysis of Triglycerides by Immobilized Lipase in a Hydrophilic Membrane Reactor’, Biotechnol. Bioeng., vol. 32, pp. 512–518

    Article  CAS  Google Scholar 

  • Qi, Z., Cussler, E.L. (1985) ‘Hollow fiber gas membranes’, AIChE J., vol. 31, pp. 1548–1553

    Article  CAS  Google Scholar 

  • Schönherr, O.T., Van Gelder, P.T.J.A. (1988) ‘Culture of Animal Cells in Hollow-fibre Dialysis Systems’, Animal Cell Biotechnology, vol. 3, (Spier, R., Griffiths, J.B., Ed.) Academic Press, London, pp. 337–353

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers Ltd, England

About this chapter

Cite this chapter

Czermak, P., Bauer, W.J. (1991). Process Optimization of an Enzyme Membrane Reactor with Soluble Enzymes up to Industrial Scale. In: Turner, M.K. (eds) Effective Industrial Membrane Processes: Benefits and Opportunities. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3682-2_18

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3682-2_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-723-9

  • Online ISBN: 978-94-011-3682-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics