Skip to main content

Damage and Failure Prediction of Spherical Composite Pressure Vessels

  • Chapter
Composite Structures

Abstract

A primary goal of the work reported here was the development of a degradation model to predict the first damage and burst pressure offilament reinforced metallic spherical vessels. Using the simple method proposed by Tsai and Roy(Composite Design, 3rd edn, Think Composite, Dayton, Ohio, 1987) for composite cylinders, these modelling concepts have been combined with the laminate plate theory and the quadratic failure criterion. Experimental results obtained from burst tests are presented. These values are used to evaluate the effectiveness of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Charpentier, P. and Reuille, G., High pressure gas storage tanks, a compromise between safety regulations and performances. AIAA-85-1201, 21st Joint Propulsion Conference, Monterey, July 8 - 11, 1985.

    Google Scholar 

  2. Gerstle, F. P. Jr., High performance advanced composite spherical pressure vessels. ASME Paper No. 74-PVP-42, 1974.

    Google Scholar 

  3. Gerstle, F. P. Jr, Analysis of filament reinforced spherical pressure vessels. Composite;Materialsj Testing Design (3rd Conference), ASTM STP 546, American Society for Testing and Materials, Philadelphia, PA, 1974, pp. 604–31.

    Google Scholar 

  4. Chiao, T. T., Hamstad, M. A. and Marcon, M. A., Organic fiber/epoxy pressure vessels. Sample quarterly, 5 (1974) 17.

    CAS  Google Scholar 

  5. Faddoul, J. R., Structural considerations in design of light-weight glass-fiber composite pressure vessel. In Proc. Second International Conf erence on Pressure Vessel Technology, Part 1, Design and Analysis. ASME, Oct. 1973, pp. 561–72.

    Google Scholar 

  6. Gleich, D., Design considerations and structural performance of prestressed composite vessels. AIAA-82-1230, 18th Joint Propulsion Conference, June 1982.

    Google Scholar 

  7. Chen, M. C. and Clewlow, L. N. O., Computer analysis of filament-reinforced metallic-spherical pressure vessels, Composite & Structures, 7 (1977) 93–102.

    Article  Google Scholar 

  8. Knight, C. E., Analytical failure prediction of spherical composite pressure vessels, Journal of Pressure Vessel Technology, 104 (1982) 229–31.

    Article  Google Scholar 

  9. Gerstle, F. P. Jr and Kunz, S. C., Prediction of long term failure in Kevlar 49 composites. Long-Term Behavior of Composites, ed. T. K. O’Brien, ASTM STP 813, 1983, pp. 263–92.

    Google Scholar 

  10. Toland, R. H. and Chiao, T. T., Stress-rupture of kevlar-epoxy spherical pressure vessels. UCID-17755, Part 1, University of California, Lawrence Livermore National Laboratory, Livermore, CA, 1978.

    Google Scholar 

  11. Toland, R. H. and Chiao, T. T., Stress-rupture of kevlar/epoxy spherical pressure vessels, UCID-17755, Part 2, University of California, Lawrence Livermore National Laboratory, Livermore, CA, 1978.

    Google Scholar 

  12. Kapur, K. C. and Lambkrson, L. R., Reliability in Engineering Design. John Wiley, New York, 1979.

    Google Scholar 

  13. Tsai, S. W. and Roy, A. K., Composite Design, 3rd edn. Think Composite, Dayton, Ohio, 1987.

    Google Scholar 

  14. Mahlkr, J. P. and Bradley, R. T., The LLL sphere-winding machine, UCRL- 51934, University of California, Lawrence Livermore National Laboratory, Livermore, CA, 1975.

    Google Scholar 

  15. Goldenblat, I. and Knopov, V. A., Strength of glass-reinforced plastics in the complex stress shape. Polymer Mechanics, 1 (1965) 54.

    Article  Google Scholar 

  16. Weibull, W., Statistical distribution function of wide applicability. ASME Journal of Applied Mechanics, 18 (1951) 293.

    Google Scholar 

  17. CEA (Commissariat a Tenergie Atomique), Statistique appliquee a Texploitation des mesures, Vols 1, Ed. Masson, 1978.

    Google Scholar 

  18. CEA (Commissariat a Tenergie Atomique), Statistique appliquee a Texploitation des mesures, Vols 2, Ed. Masson, 1978.

    Google Scholar 

  19. Mouhamath, B. and Bunsell, A. R., Acoustic emission of filament reinforced metallic-spherical pressure vessels. In Proc. of the 10th International Acoustic Emission Symposium, Progress in Acoustic Emission V, Oct., 1990, pp. 280–4.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Elsevier Science Publishers LTD.

About this chapter

Cite this chapter

Mouhamath, B., Massard, T., Bunsell, A.R. (1991). Damage and Failure Prediction of Spherical Composite Pressure Vessels. In: Marshall, I.H. (eds) Composite Structures. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3662-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3662-4_21

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-85166-647-8

  • Online ISBN: 978-94-011-3662-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics