Advertisement

Meta-Neuroanatomy: The Myth of the Unbounded Mind/Brain

  • Christopher Cherniak
Part of the Synthese Library book series (SYLI, volume 217)

Abstract

A picture of human cognitive resources as effectively unbounded pervades mind/brain science to a significant extent, in particular its most concrete level, neuroanatomy. Predominant models of brain structure appear to be profoundly non-quantitative in some respects, not quantitatively coherent. We will focus here on evaluating recent estimates of area of the human cortical sheet, estimates of synaptic densities there, and studies of giant axonic arborizations in the visual cortex. This examination in fact yields some information on actual available cortical connectivity resources that is presently of interest as a basic constraint on models of computation in the brain. Finally, some of the conceptual etiology of the non-quantitative character of brain anatomy will be explored. While the discussion somewhat improves estimates of cortical resources, emphasis will be at the level of philosophy and methodology of neuroanatomy, and on how they can productively shift perspectives that guide scientific practice.

Keywords

Visual Cortex Primary Visual Cortex Total Brain Volume Human Cerebral Cortex Concrete Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Anderson, J. and Hinton, G. Models of information processing in the brain. In G. Hinton and J. Anderson, eds., Parallel Models of Associative Memory. Hillsdale, N.J.: Erlbaum, 1981.Google Scholar
  2. Berlucci, G. and Sprague, J. The cerebral cortex in visual learning and memory, and in interhemispheric transfer in the cat. In F. Schmitt, F. Worden, G. Adelman and S. Dennis, eds., 1981.Google Scholar
  3. Blasdel, G. and Lund, J. Termination of afferent axons in macaque striate cortex. Journal of Neuroscience, 1983, 3, 1389–1413.Google Scholar
  4. Blinkov, S. and Glezer, I. The Human Brain in Figures and Tables: A Quantitative Handbook. New York: Plenum Press, 1968.Google Scholar
  5. Bullock, T. and Horridge, A. Structure and Function in the Nervous Systems of Invertebrates. San Francisco: W. H. Freeman, 1965.Google Scholar
  6. Cajal, S. Ramony. Histologie du Systeme Nerveux de l’Homme et des Vertebres. Paris: Maloine, 1911.Google Scholar
  7. Carpenter, M. and Sutin, J. Human Neuroanatomy, 8th ed. Baltimore: Williams and Wilkins, 1983.Google Scholar
  8. Cherniak, C. Minimal Rationality. Cambridge, Mass.: MIT Press, 1986.Google Scholar
  9. Cherniak, C. Undebuggability and cognitive science. Communications of the Association for Computing Machinery, 1988, 31, 402–412.CrossRefGoogle Scholar
  10. Cherniak, C. Local network optimization in the brain, University of Maryland Institute for Advanced Computer Studies Technical Report UMIACS-TR-90–90, 1990.Google Scholar
  11. Cognitive Science, 1985, 9.Google Scholar
  12. Colonnier, M. The electron-microscopic analysis of the neuronal organization of the cerebral cortex. In F. Schmitt, F. Worden, G. Adelman and S. Dennis, eds., 1981.Google Scholar
  13. Cragg, B. The density of synapses and neurones in the motor and visual areas of the cerebral cortex. Journal of Anatomy, 1967, 101, 639–654.Google Scholar
  14. Cragg, B. The density of synapses and neurons in normal, mentally defective and ageing human brains. Brain, 1975, 98, 81–90.CrossRefGoogle Scholar
  15. Descartes, R. Meditations on First Philosophy. L. Lafleur, trans. New York: Bobbs-Merrill, 1960.Google Scholar
  16. Dickinson, E. The Poems of Emily Dickinson, vol. 2., T. Johnson, ed. Cambridge, Mass.: Harvard University Press, 1965.Google Scholar
  17. Feldman, M. Morphology of the neocortical pyramidal neuron. In A. Peters and E. Jones, eds., 1984.Google Scholar
  18. Fulton, J., ed. Physiology of the Nervous System, 3rd ed. New York: Oxford University Press, 1949.Google Scholar
  19. Gilbert, C. and Wiesel, T. Clustered intrinsic connections in cat visual cortex. Journal of Neuroscience, 1983, 3, 1116–1133.Google Scholar
  20. Gray, E. Axo-somatic and axo-dendritic synapses of the cerebral cortex: an electron microscope study. Journal of Anatomy, 1959, 93, 420–433.Google Scholar
  21. Hillman, D. Neuronal shape parameters and substructures as a basis of neuronal form. In F. Schmitt and F. Worden, eds., The Neurosciences: Fourth Study Program. Cambridge, Mass.: MIT Press, 1979.Google Scholar
  22. Hofman, M. Encephalization in hominids: evidence for the model of punctuationalism. Brain, Behavior and Evolution, 1983, 22, 102–117.CrossRefGoogle Scholar
  23. Hubel, D. The brain. Scientific American, 1979, 241, 44–53.CrossRefGoogle Scholar
  24. Hubel, D. and Wiesel, T. Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. Journal of Physiology, 1962, 160, 106–154.Google Scholar
  25. Hubel, D., and Wiesel, T. Brain mechanisms of vision. Scientific American, 1979, 241, 150–162.CrossRefGoogle Scholar
  26. Jerne, N. The generative grammar of the immune system. Science, 1985, 229, 1057–1059.CrossRefGoogle Scholar
  27. Jones, E. and A. Peters, eds. Cerebral Cortex, vol. 6. New York: Plenum Press, 1987.Google Scholar
  28. Jouandet, M., Tramo, M., Herron, D., Hermann, A., Loftus, W., Bazell, J. and Gazzaniga, M. Brainprints: Computer-generated two-dimensional maps of the human cerebral cortex in vivo. Journal of Cognitive Neuroscience, 1989, 1, 88–117.CrossRefGoogle Scholar
  29. Konigsmark, B. Methods for the counting of neurons. In W. Nauta and S.Ebbesson, eds., Contemporary Research Methods in Neuroanatomy. New York: Springer-Verlag, 1970.Google Scholar
  30. Lamantia, A. and Rakic, P. The cytological and quantitative characteristics of four cerebral commissures in the rhesus monkey. Journal of comparative Neurology, 1990, 291, 520.CrossRefGoogle Scholar
  31. Lorente de No, R. Cerebral cortex: architecture, intracortical connections, motor projections. In J. Fulton, ed., Physiology of the Nervous System, 3rd ed. New York: Oxford University Press, 1949.Google Scholar
  32. Mountcastle, V. Modality and topographic properties of single neurons of cat’s somatic sensory cortex. Journal of Neurophysiology, 1957, 20, 408–434.Google Scholar
  33. Mountcastle, V. An organizing principle for cerebral function: the unit module and the distributed system. In G. Edelman and V. Mountcastle, eds., The Mindful Brain. Cambridge, Mass.: MIT Press, 1978.Google Scholar
  34. O’Kusky, J. and Cotonnier, M. A laminar analysis of the number of neurons, glia and synapses in the visual cortex (area 17) of adult macaque monkeys. Journal of Comparative Neurology, 1982, 210, 278–290.CrossRefGoogle Scholar
  35. Pappius, H. Water spaces. In A. Lajtha, ed., Handbook of Neurochemistry, vol. 1, 2nd ed. New York: Plenum Press, 1982.Google Scholar
  36. Paullin, C. Atlas of the Historical Geography of the United States. Westport, Conn.: Greenwood Press, 1932.Google Scholar
  37. Peters, A. The visual cortex of the rat. In A. Peters and E. Jones, eds., 1985.Google Scholar
  38. Peters, A. Number of neurons and synapses in primary visual cortex. In E. Jones and A. Peters, eds., 1987.Google Scholar
  39. Peters, A., Palay, S. and Webster, H. The Fine Structure of the Nervous System: The Cells and Their Processes. New York: Harper and Row, 1970.Google Scholar
  40. Peters, A. and Jones, E., eds. Cerebral Cortex, vol. 1. New York: Plenum Press, 1984.Google Scholar
  41. Peters, A. and Jones, E., eds. Cerebral Cortex, vol. 3. New York: Plenum Press, 1985.Google Scholar
  42. Pope, A. Neuroglia: Quantitative aspects. In E. Schoffeniels, G. Franck, L. Hertz, and D. Tower, eds., 1978.Google Scholar
  43. Rakic, P. Developmental events leading to laminar and areal organization of the neocortex. In F. Schmitt, F. Worden, G. Adelman and S. Dennis, eds., 1981.Google Scholar
  44. Rockland, K. and Lund, J. Intrinsic laminar lattice connections in primate visual cortex. Journal of Comparative Neurology, 1983, 216, 303–318.CrossRefGoogle Scholar
  45. Rumelhart, D. and McClelland, J., eds. Parallel Distributed Processing, vols. 1 & 2. Cambridge, Mass.: MIT Press, 1986.Google Scholar
  46. Schoffeniels, E., Franck, G., Hertz, L., and Tower, D., eds. Dynamic Properties of Glia Cells. New York: Pergamon Press, 1978.Google Scholar
  47. Shariff, G. Cell counts in the primate cerebral cortex. Journal of Comparative Neurology, 1953, 98, 381–400.CrossRefGoogle Scholar
  48. Shepherd, G. The Synaptic Organization of the Brain. New York: Oxford University Press, 1979.Google Scholar
  49. Shkol’nik-Yarros, E. Neurons and Interneuronal Connections of the Central Visual System. New York: Plenum Press, 1971.CrossRefGoogle Scholar
  50. Sholl, D. The organization of the visual cortex in the cat. Journal of Anatomy, 1955, 89, 33–46.Google Scholar
  51. Sperry, R. Cerebral regulation of motor coordination in monkeys following multiple transection of sensorimotor cortex. Journal of Neurophysiology, 1947, 10, 275–294.Google Scholar
  52. Sperry, R. and Miner, N. Pattern perception following insertion of mica plates into visual cortex. Journal of Comparative and Physiological Psychology, 1955, 48: 463–469.CrossRefGoogle Scholar
  53. Sperry, R., Miner, N., and Myers, R. Visual pattern perception following sub-pial slicing and tantalum wire implantations in the visual cortex. Journal of Comparative and Physiological Psychology, 1955, 48, 50–58.CrossRefGoogle Scholar
  54. Tower, D. General perspectives and conclusions of the Symposium on Dynamic Properties of Glial Cells. In E. Schoffeniels, G. Franck, L. Hertz, and D. Tower, eds., 1978.Google Scholar
  55. Tower, D. The activities of butyrylcholinesterase and carbonic anhydrase, the rate of anaerobic glycolysis, and the question of a constant density of glial cells in cerebral cortices of various mammalian species from mouse to whale. Journal of Neurochemistry, 1973, 20, 269–278.CrossRefGoogle Scholar
  56. Tversky, A. and Kahneman, D. Judgment under uncertainty: heuristics and biases. In D. Kahneman, P. Slovic and A. Tversky, eds., Judgment Under Uncertainty: Heuristics and Biases. New York: Cambridge University Press, 1982.Google Scholar
  57. Valverde, F. The organizing principles of the primary visual cortex in the monkey. In A. Peters and E. Jones, eds., 1985.Google Scholar
  58. Vernadakis, A. Changes in astrocytes with aging. In S. Fedoroff and A. Vernadakis, eds., Astrocytes: Biochemistry, Physiology, and Pharmacology of Astrocytes vol. 2. Orlando, Fla.: Academic Press, 1986.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1991

Authors and Affiliations

  • Christopher Cherniak
    • 1
  1. 1.Philosophy Department and Institute for Advanced Computer StudiesUniversity of MarylandUSA

Personalised recommendations