Skip to main content

Evolutionary Models of Rotating Stars

  • Chapter

Part of the book series: NATO ASI Series ((ASIC,volume 340))

Abstract

In this paper we review the principal elements of the Yale code for evolving rotating stars (YREC). The various mechanisms to distribute angular momentum in the solar interior used in the code are discussed, both in regard to their properties and their consequences in the stellar models. In particular, two general types of mechanisms exist, one which depends on the velocity of rotation, and the other which depends on the radial gradient of this quantity. The regions where these mechanisms operate effectively, and the times when this occurs, and possibly the efficiency of these transfer mechanisms to cause material mixing, depend on which of the two types they belong.

The main effects of rotation in stellar evolution are on the surface velocity and the surface abundance of trace elements and CNO as a function of time. The effects on the internal structure, and therefore the evolution, as shown in an H-R diagram, are much smaller. Because of the structure differences in stars of different composition, the consequences also differ with population type.

We have computed stellar models including the effects of rotation for the Sun, open cluster stars, and halo stars. Solar-calibrated models with rotationally-induced mixing can reproduce the main features of the surface lithium depletion pattern and surface velocity both as a function of stellar mass within an open cluster and as a function of time from cluster to cluster, and also in halo dwarfs. Furthermore, our halo star models have substantial differential rotation with depth. This differential rotation provides them with enough internal angular momentum to explain the high observed rotation velocities of evolved metal-poor horizontal branch stars, while at the same time they rotate slowly enough at the surface to be consistent with the low upper limits on the rotation of metal-poor main sequence stars. By contrast, models constructed assuming rigid rotation in the main sequence cannot reconcile the high rotation velocities of evolved stars with the low rotation velocities of their main sequence progenitors.

The solar models constructed in this fashion show that the present Sun rotates with increasing angular velocity in the deep interior.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anders, E., and Grevesse, N. (1989), ‘Abundances of the Elements: Meteoritic and Solar’, Geochim. Cosmochim. Acta, 53, 197–214.

    Article  ADS  Google Scholar 

  • Balachandran, S. (1988), Lithium Depletion and Rotation in Main Sequence Stars, Ph. D. Dissertation, University of Texas.

    Google Scholar 

  • Bodenheimer 1965, ‘Studies in Stellar Evolution II. Lithium Depletion During the Pre-Main Sequence Contraction’, Ap.J., 142, 451–461.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M. (1976), ‘Beryllium in Main-Sequence Stars’ Ap. J., 210, 466–474.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M. (1985), ‘Lithium in Halo Dwarfs’, Pub. A. S. P., 97, 784–789.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., and Budge, K. G. (1987) ‘Lithium in the Hyades, the Hyades Moving Group, and Praesepe’, Ap. J., 332, 410–420.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., and Budge, K. G. (1989), ‘Beryllium Abundances in Lithium-Deficient Hyades F Stars’, Ap. J., 338, 875–887.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., Budge, K. G., and Burck, E. E. (1988), ‘Lithium and Metallicity in the Ursa Major Group’, Ap. J., 325, 749–758.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., Budge, K. G., and Ramsay, M. E. (1988), ‘Lithium in the Pleiades and a Persei Clusters’, Ap. J., 327, 389–398.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., and Lavery, R. J. (1986), ‘Abundances in Beryllium-Deficient F Stars’, Ap. J., 309, 762–770.

    Article  ADS  Google Scholar 

  • Boesgaard, A. M., and Tripicco, M. J. (1986), ‘Lithium in the Hyades Cluster’, Ap. J. (Letters), 302, L49–L53.

    Article  ADS  Google Scholar 

  • Bouvier, J., Bertout, C., Benz, W., and Mayor, M. (1986), ‘Rotation in T Tauri Stars’, Astr. Ap., 165, 110.

    ADS  Google Scholar 

  • Butler, R.P., Cohen, R.D., Duncan, D.K., and Marcy, G.W. (1987), ‘The Pleiades Rapid Rotators: Evidence for an Evolutionary Sequence’, Ap. J. (Letters), 319, L19–L22.

    Article  ADS  Google Scholar 

  • Carlson, E. D., Ezmailzadeh, R., Hall, L. J., and Hsu, S. D. (1990), ‘Black Hole Nucleosynthesis and 526 = 1’, Phys. Rev. Letters, 65, 2225–2228.

    Article  ADS  Google Scholar 

  • Cayrel, R., Cayrel de Strobel, G., Campbell, B., and Däppen, W. (1984), ‘The Lithium Abundance of Hyades Main Sequence Stars’, Ap. J., 283, 205–208.

    Article  ADS  Google Scholar 

  • Chmielewski, Y., and Müller, E. A., and Brault, J. W. (1975), ‘The Solar Beryllium Abundance’, Astr. Ap., 42, 37–46.

    ADS  Google Scholar 

  • Chmielewski, Y., and Müller, E. A., and Brault, J. W. (1975), ‘The Solar Beryllium Abundance’, Astr. Ap., 42, 37–46.

    ADS  Google Scholar 

  • de Medeiros (1990), private communication.

    Google Scholar 

  • Deliyannis, C. P. (1990), Primordial lithium and Stellar Evolution: Lithium in Halo Stars from Standard, Diffusive, and Rotational Stellar Evolution and Implications for Cosmology, Ph. D. Dissertation, Yale University.

    Google Scholar 

  • Deliyannis, C. P. (1990), Primordial lithium and Stellar Evolution: Lithium in Halo Stars from Standard, Diffusive, and Rotational Stellar Evolution and Implications for Cosmology, Ph. D. Dissertation, Yale University.

    Google Scholar 

  • Deliyannis, C. P., and Demarque, P. (1991b), Ap. J.,submitted.

    Google Scholar 

  • Deliyannis, C. P., and Demarque, P. (1991c), Ap. J.,submitted.

    Google Scholar 

  • Deliyannis, C. P., Demarque, P., Kawaler, S. D. (1990), ‘Lithium in Halo Stars from Standard Stellar Evolution’, Ap. J. Suppl., 73, 21–65.

    Article  ADS  Google Scholar 

  • Deliyannis, C. P., Demarque, P., Kawaler, S. D., Krauss, L. M., and Romanelli, P. (1989), ‘Primordial Lithium and the Standard Model(s)’, Phys. Rev. Letters, 62, 1583–1586.

    Article  ADS  Google Scholar 

  • Deliyannis, C. P., Demarque, P., and Pinsonneault, M. H. (1989), ‘The Ages of Globular Cluster Stars: Effects of Rotation on Pre-Main Sequence, Main Sequence, and Turnoff Evolution’, Ap. J. (Letters), 347, L73–L76.

    Article  ADS  Google Scholar 

  • Deliyannis, C. P., and Pinsonneault, M. H. (1990) ‘Beryllium in the Galactic Halo: Surface Abundances from Standard, Diffusive, and Rotational Stellar Evolution, and Implications’, Ap. J. (Letters), 365, L67–L71.

    Article  ADS  Google Scholar 

  • Deliyannis, C. P., and Pinsonneault, M. H. (1991), ‘Beryllium in Population I Lithium Dip F Stars: Constraints on Stellar Evolution’, Ap. J., submitted.

    Google Scholar 

  • Deliyannis, C. P., Pinsonneault, M. H., and Demarque, P. (1991a), ‘Primordial Lithium’

    Google Scholar 

  • Stellar Evolution, Big Bang Cosmology, and Dark Matter, Api.,submitted.

    Google Scholar 

  • Dimopoulos, S., Esmailzadeh, R., Hall, L. J., and Starkuran, G. D. (1988), ‘Is the Universe Closed by Baryons? Nucleosynthesis with a Late-Decaying Massive Particle’, Ap. J., 330, 545–568.

    Article  ADS  Google Scholar 

  • Duncan, D. K. and Jones, B. F. (1983), ‘Lithium Abundance and Age Spread in the Pleiades’, Ap. J., 271, 663–671.

    Article  ADS  Google Scholar 

  • Durney, B. R., and Latour, J. (1978), Geophys. Ap. Fluid. Dynamics, 9, 241.

    Google Scholar 

  • Endal, A. S., and Sofia, S. (1976), ‘The Evolution of Rotating Stars. I. Method and Exploratory Calculations for a 7 Mo Star’, Ap. J., 210, 184–198.

    Article  ADS  Google Scholar 

  • Endal, A. S., and Sofia, S. (1978), ‘The Evolution of Rotating Stars. II. Calculations with Time-Dependent Redistribution of Angular Momentum for 7 and 10 Mo Stars’, Ap. J., 220, 279–290.

    Article  ADS  Google Scholar 

  • Endal, A. S., and Sofia, S. (1981), ‘Rotation in Solar-Type Stars. I. Evolutionary Models for the Spin-Down of the Sun’, Ap. J., 243, 625–640.

    Article  ADS  Google Scholar 

  • Greenstein, J. L., and Richardson, R. S. (1951), ‘Lithium and the Internal Circulation of the Sun’, Ap. J., 113, 536–546.

    Article  ADS  Google Scholar 

  • Hartmann, L. W., and Stauffer, J. R. (1989), `Additional Measurements of Pre-Main Sequence Stellar Rotation’, Ap. J., 97, 873–880.

    ADS  Google Scholar 

  • Hill, F. (1987), ‘The Equatorial Rotation Rate in the Solar Convection Zone’, in B. R. Durney and S. Sofia (eds.), The Internal Solar Angular Velocity, Reidel, 45–50.

    Chapter  Google Scholar 

  • Hobbs, L. M., and Duncan, D. K. (1987), `The Lithium Abundance in Halo Stars’, Ap. J., 317, 796–809.

    Article  ADS  Google Scholar 

  • Hobbs, L. M., and Pilachowski, C. (1986), `Lithium in NGC 752’, Ap. J.(Letters), 309, L17–L21.

    Article  ADS  Google Scholar 

  • Hobbs, L. M., and Pilachowski, C. (1988a), ‘Lithium in an Extreme Halo Star’, Ap. J., 326, L23–L26.

    Article  ADS  Google Scholar 

  • Hobbs, L. M., and Pilachowski, C. (1988b), ‘Lithium in Old Open Clusters: NGC 188’, Ap. J., 334, 734–745.

    Article  ADS  Google Scholar 

  • Kawaler, S. D. (1988), ‘Angular Momentum Loss in Low-Mass Stars’, Ap. J., 333, 236–247.

    Article  ADS  Google Scholar 

  • Kippenhahn, R. and Thomas, H.-C. (1970), ‘A Simple Method for the Solution of the Stellar Structure Equations Including Rotation and Tidal Forces’, in A. Slettebak (ed.), Stellar Rotation, Reidel, Dordrecht, 20–29.

    Chapter  Google Scholar 

  • Kraft, R. P. (1970), ‘Stellar Rotation’, in G. H. Herbig (eds), Spectroscopic Astrophysics, University of california Press, Berkeley, pp. 385–422.

    Google Scholar 

  • Kraft, R. P. (1970), ‘Stellar Rotation’, in G. H. Herbig (ed.), Spectroscopic Astrophysics, University of california Press, Berkeley, pp. 385–422.

    Google Scholar 

  • Magazzu, A., and Rebolo, R. (1989), ‘Lithium in T Tauri Stars’, Mem. S. A. It., 60, 105–109.

    ADS  Google Scholar 

  • Malaney, R. (1991), ‘Probing the Early Universe: A Review of Non-Standard Primordial Nucleosynthesis’, submitted to Physics Reports.

    Google Scholar 

  • Mestel, L. (1984), ‘Angular Momentum Loss During Pre-Main Sequence Contraction’, S. L. Baliunas and L. Hartmann (eds.), in 3rd Cambridge Workshop on Cool Stars, Stellar Systems, and the Sun, Springer-Verlag, Berlin, 49–59.

    Google Scholar 

  • Molaro, P. (1987), ‘Upper Limit to the Boron Abundance in the Population II Star HD 140283’, Astr. Ap., 183, 241–246.

    ADS  Google Scholar 

  • Peterson, R. C. (1983), ‘The Rotation of Horizontal Branch Stars. II. Members of the Globular Clusters M3,M5, and M13’, Ap. J., 275, 737–751.

    Article  ADS  Google Scholar 

  • Peterson, R. C. (1985a), ‘The Rotation of Horizontal Branch Stars. III. Members of the Globular Cluster M4’, Ap. J., 289, 320–325.

    Article  ADS  Google Scholar 

  • Peterson, R. C. (1985b), ‘The Rotation of Horizontal Branch Stars. IV. Members of the Globular Cluster NGC 288’ Ap. J. (Letters), 294, L35–L37.

    Article  ADS  Google Scholar 

  • Peterson, R. C., Tarbell, T. D., and Carney, B. W. (1983), ‘The Rotation of Horizontal Branch Stars. I. Members of the Field’, Ap. J., 265, 972–981.

    Article  ADS  Google Scholar 

  • Pilachowski, C. A., Booth, J., and Hobbs, L. M. (1987), ‘The Abundance of Lithium in Pleiades F Stars’, Pub A.S.P., 99, 1288–1291.

    Article  ADS  Google Scholar 

  • Pilachowski, C. A., and Milkey, R. W. (1987), ‘The Rotational Velocities of White Dwarfs’, Pub. A. S. P., 99, 836–838.

    Article  ADS  Google Scholar 

  • Pinsonneault, M. H. (1988), Evolutionary Models of the Rotating Sun and Implications for Other Low Mass Stars, Ph.D. Dissertation, Yale University.

    Google Scholar 

  • Pinsonneault, M. H. (1988), Evolutionary Models of the Rotating Sun and Implications for Other Low Mass Stars, Ph.D. Dissertation, Yale University.

    Google Scholar 

  • Pinsonneault, M. H. (1988), Evolutionary Models of the Rotating Sun and Implications for Other Low Mass Stars, Ph.D. Dissertation, Yale University.

    Google Scholar 

  • Pinsonneault, M. H., DeHyannis, C. P., and Demarque, P. (1991b), ‘Evolutionary Models of Halo Stars with Rotation: II. Effects of Metallicity on Lithium Depletion, and Possible Implications for the Primordial Lithium Abundance’, Ap. J. Suppl., submitted. (PDD2)

    Google Scholar 

  • Pinsonneault, M. H., Kawaler, S. D., and Demarque, P. (1990), ‘Rotation of Low Mass Stars: A New Probe of Stellar Evolution’, Ap. J. Suppl., 74, 501–550. (PKD)

    Article  ADS  Google Scholar 

  • Pinsonneault, M. H., Kawaler, S. D., Sofia, S., and Demarque, P. (1989), ‘Evolutionary Models of the Rotating Sun’, Ap. J., 338, 424–452. (PKSD)

    Article  ADS  Google Scholar 

  • Prather, M. (1976), The Effect of a Brans-Dicke Cosmology Upon Stellar Evolution and the Evolution of Galaxies, Ph. D. Dissertation, Yale University.

    Google Scholar 

  • Radick, R. R., Thompson, D. T., Lockwood, G. W., Duncan, D. K., and Baggett, W. E. (1987), ‘The Activity, Variability, and Rotation of Lower Main Sequence Hyades Stars’, Ap. J., 321, 459–472.

    Article  ADS  Google Scholar 

  • Rebolo, R., and Beckman, J. E. (1988), ‘Lithium and Rotation in the Hyades Late F and G Stars’, Astr. Ap., 201, 267–272.

    ADS  Google Scholar 

  • Rebolo, R., Beckman, J. E., and Molaro, P. (1987), ‘The Lithium Abundance in the Extremely Metal-Deficient Dwarf G 64–12’, Astr. Ap., 172, L17–L19.

    ADS  Google Scholar 

  • Rebolo, R., Molaro., P., and Beckman, J. E. (1988), ‘Lithium Abundances in Metal-Deficient Dwarfs’, Astr. Ap., 192, 192–205.

    ADS  Google Scholar 

  • Ryan, S. G., Bessell, M. S., Sutherland, R. S., and Norris, J. E. (1990), ‘9Be Abundances in Population II Stars: Implications for Light Element Nucleosynthesis’, Ap. J. (Letters), 348, L57–L60.

    Article  ADS  Google Scholar 

  • Skumanich, A. (1972), ‘Timescales for Call Emission Decay, Rotational Braking and Lithium Depletion’, Ap. J., 171, 565–567.

    Article  ADS  Google Scholar 

  • Smith, M. A. (1978), ‘An Anticorrelation Between Macroturbulence and Age in G stars Near the main Sequence’, Ap. J., 224, 584–594.

    Article  ADS  Google Scholar 

  • Soderblom, D. R., Oey, M. S., Johnson, D. R. H., and Stone, R. P. S. (1990), ‘The Evolution of the Lithium Abundances of Solar-Type Stars. I. The Hyades and Coma Berenices Clusters’, A. J., 99, 595–607.

    Article  ADS  Google Scholar 

  • Spite, M., Maillard, J. P., and Spite,. F. (1984), ‘Abundance of Lithium in Another Sample of Halo Dwarfs, and in the Spectroscopic Binary BD 0° 4234’, Astr. Ap., 141, 56–60.

    ADS  Google Scholar 

  • Spite, F., and Spite,. M. (1982), ‘Abundance of Lithium in Unevolved Halo Stars and Old Disk Stars: Interpretation and Consequences’, Astr. Ap., 115, 357–366.

    ADS  Google Scholar 

  • Spite, F., and Spite,. M. (1986), ‘Lithium Abundance in Nitrogen-Rich Halo Dwarfs’, Astr. Ap., 163, 140–144.

    ADS  Google Scholar 

  • Spite, M., Spite,. F., Peterson, R. C., and Chaffee, F. H. Jr. (1987), ‘Lithium Abundance in Two Extreme High-Velocity Metal-Poor Dwarfs’, Astr. Ap.(Letters), 172, L9–L10.

    ADS  Google Scholar 

  • Stauffer, J. R., and Hartmann, L. W. (1986), ‘The Rotational Velocities of Low Mass Stars’, Pub. A. S. P., 98, 1233–1251.

    Article  ADS  Google Scholar 

  • Stauffer, J. R., and Hartmann, L. W. (1987), ‘The Distribution of Rotational Velocities for Low Mass Stars in the Pleiades’, Ap. J., 318, 337–355.

    Article  ADS  Google Scholar 

  • Strom, K. M., Wilkin, F. P., Strom, S. E., and Seaman, R. L. (1989), ‘Lithium Abundances Among Solar-Type Pre-Main Sequence Stars’, A. J., 98, 1444–1450.

    Article  ADS  Google Scholar 

  • Willson, L. A. and Bowen, G. H. (1988), ‘Atmospheric Structure and Stellar Winds from Luminous Late-type Variables’, in G.W. Coyne et al. (eds), Polarized Radiation of Circumstellar Origin, University of Arizona Press, Tuscon, p. 485.

    Google Scholar 

  • Zahn, J.-P., and Bouchet, L. (1989), ‘Tidal Evolution of Close Binary Stars H. Orbital Circularization of Late-Type Binaries’, Astr. Ap., 223, 112–118.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Sofia, S., Pinsonneault, M., Deliyannis, C.P. (1991). Evolutionary Models of Rotating Stars. In: Catalano, S., Stauffer, J.R. (eds) Angular Momentum Evolution of Young Stars. NATO ASI Series, vol 340. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3580-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3580-1_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5587-1

  • Online ISBN: 978-94-011-3580-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics