Skip to main content

The Role of the Duality Rotation in the Dirac Theory. Comparison between the Darwin and the Krüger Solutions for the Central Potential Problem

  • Chapter
The Electron

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 45))

Abstract

The Dirac particle is mostly to be represented by a spacelike plane P(x), the “spin plane” considered at each point x of the Minkowski spacetime M. The infinitesimal motion of this plane expresses, after multiplication by the constant ħc/2, the local energy of the particle.

The spin plane is subjected to a transformation of an euclidean nature, but particular to the geometry of M and situated outside our usual understanding of the geometry of the euclidean spaces, the duality rotation by an “angle” ß. Such a transformation can act on planes but leaves invariant the straight lines. It plays a fundamental role in the passage from the equation of the particle to the one of the antiparticle: this passage is achieved by the change ßß+π which reverses the orientation of planes without changing the one of straight lines. It brings arguments against the physical interest of the PT transform.

The solutions of the Dirac equation for a central potential problem are studied from the point of view of the behaviour of the energy—momentum tensor and of the angle ß. All would be clear if one would have, everywhere, ß = 0 for the electron and ß = π for the positron! But it is not the case in the Darwin solutions. A comparison between these solutions and the ones recently established by H. Krüger, for which ß = 0 or π everywhere, is carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yvon, J. (1940) ‘Equations de Dirac-Madelung’, J. Phys. et le Radium’VIII,18.

    Article  MathSciNet  Google Scholar 

  2. Costa de Beauregard, o. (1943) Contribution à l’étude de la Théorie de l’électron, Ed. Gauthiers-Villars, Paris .

    Google Scholar 

  3. Jakobi, G. and Lochak, G. (1956) Introduction des paramètres relativistes de Cayley-Klein dans la représentation hydrodynamique de l’équation de Dirac’, C.R. Acad. Sc. Paris 243, 234.

    Google Scholar 

  4. Takabayasi, T. (1957) ’Relativistic hydrodynamics of the Dirac matter’, Suppl. Prog. Tneor. Phys. 4, 1.

    ADS  Google Scholar 

  5. Halbwachs, F. (1960) Théorie relativiste de fluides à spin, Ed.Gauthiers-Villars, Paris.

    Google Scholar 

  6. Halbwachs, F. Souriau, J. M. and Vigier, J.R. (1961) ’Le groupe d’invariance associé aux rotateurs relativistes et la théorie bilocale’,J. Phys. et le Radium, 22, 293.

    MathSciNet  Google Scholar 

  7. Casanova, G. (1968) ’Sur l’angle de Takabayasi’, C.R. Acad. Sc. Paris,266 B, 1551.

    Google Scholar 

  8. Hestenes, D. (1967) ’Real spinor fields’, J. Math. Phys., 8, 798.

    Article  ADS  Google Scholar 

  9. Quilichini, P. (1971) ‘Calcul de l’angle de Takabayasi dans le cas de l’atome d’hydrogène’, C.R. Acad. Sc. Paris 273 B, 829.

    MathSciNet  Google Scholar 

  10. Gurtler, R. (1972), Thesis, Arizona State University.

    Google Scholar 

  11. Boudet, R. and Quilichini, P. (1969) ’Sur les champs de multivecteurs unitaires et les champs de rotations’, C.R. Acad. Sc. Paris 268 A, 725.

    MathSciNet  Google Scholar 

  12. Boudet, R. (1971) ‘Sur une forme intrinsèque de l’équation de Dirac et son interprétation géometrique’, C.R. Acad. Sc. Paris 272 A, 767.

    Google Scholar 

  13. Boudet, R. (1974) ‘Sur le tenseur de Tetrode et l’angle de Takabayasi.Cas du potential central’, C.R. Acad. Sc. Paris 278 A, 1063.

    MathSciNet  Google Scholar 

  14. Boudet, R. (1985) ’Conservation laws in the Dirac theory’, J. Math.Phys., 26, 718.

    Article  MathSciNet  ADS  Google Scholar 

  15. Boudet, R. (1988)’La géométrie des particules du groupe SU(2)’,Annales Fond. L. ae Broglie (Paris), 13, 105.

    Google Scholar 

  16. Boudet, R. ’The role of Planck’s constant in Dirac and Maxwell theories’ (“Jounées Relativistes” Tours 1989), Ann. de Physiques, Paris 14,No. 6 suppl. 1, 27.

    Google Scholar 

  17. Micali, A. (1986) ‘Groupes de Clifford et groupes des spineurs’ in Clifford Algebras and Their Applications in Mathematical Physics,67–78, Ed. Chrisholm J. and Common, K., Reidel Publ. Co., Dordrecht, Holland, The Netherland.

    Chapter  Google Scholar 

  18. Boudet, R. (1990) ’The role of Planck’s constant in the Lamb shift standard formulas’ in Quantum Mechanics and Quantum Optics, Ed. Barut, A.O. Plenum Press.

    Google Scholar 

  19. Gliozzi, F. (1978) ’String-like topological excitations of the electromagnetic field’, Nucl. Phys., B 141, 379.

    Article  MathSciNet  ADS  Google Scholar 

  20. Boudet, R. (1975) ’Sur les fonctions propres des opérateurs différentiels invariants des espaces euclidiens, et les fonctions spéciales’, C.R. Acad. Sc. Paris, 280 A, 1365.

    MathSciNet  Google Scholar 

  21. Barut, A.O. and Kraus, J. (1983), ’Nonperturbative Quantum Electrodynamics: The Lamb Shift’, Found. of Phys., 13, 189.

    Article  MathSciNet  ADS  Google Scholar 

  22. Barut, A.O. and van Huele, J.F. (1985) ’Quantum electrodynamics based on self-energy: Lamb shift and spontaneous emission without field quantization’, Phys. Rev. A, 32 3187.

    Article  ADS  Google Scholar 

  23. Sommerfeld, A. (1960), Atombau und Spektrallinien, Ed. Friedr.Vieweg and Sohn, Braunschweig.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Boudet, R. (1991). The Role of the Duality Rotation in the Dirac Theory. Comparison between the Darwin and the Krüger Solutions for the Central Potential Problem. In: Hestenes, D., Weingartshofer, A. (eds) The Electron. Fundamental Theories of Physics, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3570-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3570-2_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5582-6

  • Online ISBN: 978-94-011-3570-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics