Skip to main content

Charged Particles at Potential Steps

  • Chapter
Book cover The Electron

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 45))

Abstract

The behaviour of charged particles at electromagnetic steps is analysed using the powerful mathematical tools provided by the SpaceTime Algebra. Currents predicted in the evanescent region of a Dirac wavefunction strongly suggest that the electron “zitterbewegung” (ZBW) represents a real circulation. At higher potentials, the Klein paradox reveals a crucial difficulty of interpretation of “positronic” wavefunctions that must be overcome before Hestenes’ ZBW model can be taken seriously. The problem of radiation reaction is still not solved. Solutions of the Lorentz-Dirac equation for a potential step show crazy teleological features: certain input velocities have no possible future output states. The prospects for realistic electron models are briefly discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abers, E. & Lee, B. (1973). Gauge Theories. Phys. Reports, 9, 1–141.

    Article  ADS  Google Scholar 

  • Barut, A. O. (1988). Lorentz-Dirac Equation and Energy Conservation for Radiating Electrons. Phys. Lett., 131, 11–12.

    Article  MathSciNet  Google Scholar 

  • Barut, A. O. (1990). Renormalisation and Elimination of Preacceleration and Runaway Solutions of the Lorentz-Dirac Equation. Phys. Lett., A131, 11–12.

    MathSciNet  ADS  Google Scholar 

  • Barut, A. O. & Zhanghi, N. (1984). Classical Model of the Electron. Phys. Rev. Lett., 52, 2009–2012.

    Article  MathSciNet  ADS  Google Scholar 

  • Bjorken, J. D. & Drell, S. D. (1964). Relativistic Quantum Mechanics, Vol. 1. McGraw-Hill, New York.

    Google Scholar 

  • Burke, W. L. (1970). Runaway Solutions: Remarks on the Asymptotic Theory of Radiation Damping. Phys. Rev., A2, 1501–1505.

    MathSciNet  ADS  Google Scholar 

  • Dirac, P. A. M. (1938). Classical Theory of Radiating Electrons. Proc. Roy. Soc. Lond., A47, 148–169.

    ADS  Google Scholar 

  • Feynman, R. P. (1967). The Character of Physical Law. MIT Press, Cambridge MA.

    Google Scholar 

  • Grandy, W. T., Jr. & Aghazadeh, A. (1983). Radiative Corrections for Extended Charged Particles in Classical Electrodynamics. Ann. Phys., 142, 284–298.

    MathSciNet  ADS  Google Scholar 

  • Hestenes, D. (1966). Space-Time Algebra. Gordon & Breach, New York.

    MATH  Google Scholar 

  • Hestenes, D. (1979). Spin and Uncertainty in the Interpretation of Quantum Mechanics. Am. J. Phys., 47, 399–415.

    Article  MathSciNet  ADS  Google Scholar 

  • Hestenes, D. (1982). Space-Time Structure of Weak and Electromagnetic Interactions. Found. Phys., 12, 153–168.

    Article  MathSciNet  ADS  Google Scholar 

  • Hestenes, D. (1986). A Unified Language for Mathematics and Physics. In Clifford Algebras and Their Application in Physics, (ed. J. S. R. Chisholm & A. K. Common), pp. 1–23. D. Reidel, Dordrecht.

    Chapter  Google Scholar 

  • Hestenes, D. (1990). The Zitterbewegung Interpretation of Quantum Mechanics. Found. Phys., 20, 1213–1232.

    Article  MathSciNet  ADS  Google Scholar 

  • Jaynes, E. T. (1990). Probability in Quantum Theory. In Complexity, Entropy, and the Physics of Information, (ed. W. H. Zurek), pp. 33–55. Addison-Wesley, Redwood City CA.

    Google Scholar 

  • Nikishov, A. I. (1970). Barrier Scattering in Field Theory and Removal of the Klein Paradox. Nuclear Phys.,B21, 346–358.

    ADS  Google Scholar 

  • Sawada, T., Kawabata, T. &; Uchiyama, F. (1983). Derivation of an extra condition on the Lorentz-Dirac equation from a conservation law. Phys. Rev., D27, 454–455.

    ADS  Google Scholar 

  • Wheeler, J. A. & Feynman, R. P. (1949). Classical Electrodynamics is Terms of Direct Interparticle Action. Rev. Mod. Phys., 21, 425–433.

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Gull, S.F. (1991). Charged Particles at Potential Steps. In: Hestenes, D., Weingartshofer, A. (eds) The Electron. Fundamental Theories of Physics, vol 45. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3570-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3570-2_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5582-6

  • Online ISBN: 978-94-011-3570-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics