Skip to main content

Transition and Structure of Dust Detonations

  • Chapter

Part of the book series: Fluid Mechanics and Its Applications ((FMIA,volume 5))

Abstract

The present paper deals with the transition from deflagration to detonation and the detonation structure in organic dust fuel-gas oxidizer mixtures in tube. The complete process of detonation evolution can be distinguished in four stages: 1. initial partial ignition; 2. pressure wave amplification by coherent energy release; 3. unsteady reaction shock; and 4. spin detonation. By decreasing the initiation energy the monotonic acceleration in stage 2 turns into a multistage one. The three- dimensional structure of the detonation wave front forms within the stage of the “reaction shock” in which a shock front is closely coupled with the reaction zone behind it. In this stage, an abrupt violent onset of detonation, as observed in gaseous mixtures, in some cases occurs. The spin structure exists in both the periphery and the interior region of the cross section. The detailed description of the structure shows that transverse waves play a dominant role in stable detonation propagation in those heterogeneous mixtures.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Strauss, W. A. , AIAA J. 6, 1753 (1968).

    Article  ADS  Google Scholar 

  2. Nettleton, M.A., and Stirling, R. , Combust. Flame 21, 307 (1973).

    Article  Google Scholar 

  3. Bartknecht, W., Explosionen. Springer, Berlin Heidelberg, FRG, 1978.

    Google Scholar 

  4. Kauffman, C.W., Wolanski, P., Arisoy, A., Adams, P.R., Maker, B.N., and Nicholls, J.A., Progress in Astronautics and Aeronautics, Vol. 94, AIAA, New York,1984,pp. 221–240.

    Google Scholar 

  5. Tulis, A.J., and Selman, J.R., in Proceedings of the 19th Symposium (international) on Combustion, The Combustion Institute, Pittsburgh, 1982,pp.655–663.

    Google Scholar 

  6. Peraldi, O., and Veyssiere, B. , Progress in Astronautics and Aeronautics, Vol. 106, AIAA, New York, 1986,pp. 490–504.

    Google Scholar 

  7. Gardner, B.R., Winter, R.J., and Moore, M.J., in Proceedings of the 21wt Symposium (International) on Combustion, Combustion Institute, Pittsburgh,1986,pp. 335–343.

    Google Scholar 

  8. Fangrat, J., Glinka, W., Wolanski, P., and Wolinski,M., archivum combustionis 7,321 (1987).

    Google Scholar 

  9. Tulis, A.J., and Selman, J.R. , Progress in Astronautics and Aeronautics, Vol.94, AIAA, New York, 1984, pp., 277–292.

    Google Scholar 

  10. Veyssiere, B., Desbordes, D. , and Lee, J.H., archivum combustionis 7, 185 (1987).

    Google Scholar 

  11. Lee, J.H., in Proceedings of the,16th International Symposium on Shock Tubes and Waves (H.Gronig,Ed.),VCH Weinheim, FRG, 1988,pp. 21–38.

    Google Scholar 

  12. Zhang, F., and Gronig, H., in Proceedings of the 17th International Symposium on Shock Tubes and Waves, Bethlehem, PA,1989. AIP Conference Proceedings (in Press).

    Google Scholar 

  13. Zhang, F., and Gronig, H. , 12th ICDERS, Ann Arbor, MI, 1989. Progress in Astronautics and Aeronautics, AIAA, Washington, DC (in press).

    Google Scholar 

  14. Borisov, A.A., Gelfand, B.E.,Timofeev, E.I., Tsyganov, S.A.,and Khomic, S.V., Progress in Aeronautics and Astronautics, Vol.94, AIAA, New York, 1984, pp.332–339.

    Google Scholar 

  15. Sichel, M., Baek, S.W., Kauffman, C.W., Baker, B. and Nicholls, J.A., AIAA J. 23, 1374 (1985).

    Article  ADS  Google Scholar 

  16. Benedick, W. B. , Guirao, C.M., Knystautas, R. , and Lee, J. H. , Progress in Astronautics and Aeronautics, Vol. 106, AIAA, New York, 1986, pp., 181–202.

    Google Scholar 

  17. Tang, M.J., Nicholls, J.A., Lin, Z.C., Sichel, M., and Kauffman, C.W., Progress in Astronautics and Aeronautics, Vol. 106, AIAA, New York, 1986, pp. , 474–489.

    Google Scholar 

  18. Zhang, K.Y., and Gottlieb, J.J., UTIAS Report No. 304, Institute for Aerospace Studies, University of Toronto, Downsview, Ontario, Canada (1986).

    Google Scholar 

  19. Taylor, G., Proc. Roy. Soc. A 200, 235 (1950).

    Article  ADS  MATH  Google Scholar 

  20. Zel’dovich, Y.B., Kogarko, S.M., and Simonov, N.N., Sov. Phys. Tech. Phys. 1, 1689 (1956).

    Google Scholar 

  21. Tang, M.J., and Peng, J.H., Progress in Astronautics and Aeronautics, Vol. 114, AIAA, Washington, DC, 1988, pp., 201–208.

    Google Scholar 

  22. Thompson, P.A., Compressible-Fluid Dynamics. McGraw-Hill Inc., 1972, pp. 283–462.

    Google Scholar 

  23. Beylich, A.E.,Z.Flugwiss. Weltraumforsch. 3, 48 (1979).

    Google Scholar 

  24. Fan, B.C.,and Sichel, M., in Proceedings of the 22nd Symposium (International) on Combustion, The Combustion Institute, Pittsburg, 1988.

    Google Scholar 

  25. Voitsekhovskii, B.V., Mitrofanov, V.V., and Topchian,M.E., Zh. Prikl. Mekh. Tekn. Fiz., No. 3, 27 (1962).

    Google Scholar 

  26. Schott, G.L., Phys. Fluids 8, 850 (1965).

    Article  Google Scholar 

  27. Borisov, A.A., Khasainov, B.A., Veyssiere, B. , Saneev, E. L. , Fomin, I.., Khomic, S.V., in Proceedings of the 23rd Symposium (International) on Combustion, The Combustion Institute, Pittsburg, 1990.

    Google Scholar 

  28. Urtiew, P. A. , and Oppenheim, A. K., Proc. Roy. Soc. A 295, 13 (1966).

    Article  ADS  Google Scholar 

  29. Lee, J.H. , and Moen, I.O., Prog. Energy Combust. Sci. 6, 359 (1980).

    Article  Google Scholar 

  30. Lee, J.H. , Knystautas, R., and Chan, C. K. , in Proceedings of the 20th Symposium (International) on Combustion, The Combustion Institute, Pittsburg, 1984, pp. 1663–1672.

    Google Scholar 

  31. Shchelkin, K.I., and Troshin, Y.K., Gasdynamics of Combustion. Mono Book Corp., Baltimore, Md., 1965.

    Google Scholar 

  32. Lee, J.H., Ann. Rev. Fluid Mech. 16, 311 (1984).

    Article  ADS  Google Scholar 

  33. Weast, R.C., Handbook of Chemistry and Physics. 53rd, the Chemical Rubber Co., 1972, pp. D 230 – D 235.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1991 Kluwer Academic Publishers

About this chapter

Cite this chapter

Zhang, F., Grȍnig, H. (1991). Transition and Structure of Dust Detonations. In: Borissov, A.A. (eds) Dynamic Structure of Detonation in Gaseous and Dispersed Media. Fluid Mechanics and Its Applications, vol 5. Springer, Dordrecht. https://doi.org/10.1007/978-94-011-3548-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-011-3548-1_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-5571-0

  • Online ISBN: 978-94-011-3548-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics